Basic responses of mesenchymal stem cells exposed to bovine biomaterial and platelet rich fibrin

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19134

Keywords:

Stem Cells; Biomaterial; Platelet-Rich-Fibrin; Bone Regeneration; Cell proliferation; Regenerative medicine.

Abstract

The scaffolds and their interaction with mesenchymal stem cells are objects of study in bioengineering and tissue repair. Mechanisms such as surface adhesion, proliferation, viability, and cytotoxicity are essential for the development of therapies. The present study analyzed the influence of platelet-rich fibrin (PRF) in viability, cytotoxicity, and proliferation of stem cells from human exfoliated deciduous teeth (SHED) exposed to bovine biomaterial surfaces. The studied groups were divided and analyzed as follows: (S) only SHED as control Group; (SB) SHED + biomaterial; (SBP) SHED + biomaterial + PRF. Analyses of cells seeded in 24-well plates were performed after 24, 48 and 72 hours. Individual groups were subjected to viability, cytotoxicity and cell proliferation tests using neutral red, MTT and crystal violet, respectively; and in the 72-hour group, scanning electron microscopy (SEM) was performed to record cell ultra-morphology. Data were submitted to statistical analysis by two-factor ANOVA with a significance level of 5%. The results demonstrated a better performance in the viability/cytotoxicity and proliferation of stem cells for the group (SBP) in comparison to the group (SB) and the group (S). The applied statistical tests showed that the biomaterial factor, time, and interaction between them gave rise to results with statistical significance. SHED submitted to bovine biomaterial were more viable, proliferative and with lower toxicity when associated with PRF. PRF seemed to activate the metabolism of stem cells in culture, indicating that such an association can bring an effective benefit in clinical outcome.

References

Abuarqoub, D., Aslam, N., Jafar, H., Abu Harfil, Z., & Awidi, A. (2020). Biocompatibility of Biodentine™ ® with Periodontal Ligament Stem Cells: In Vitro Study. Dentistry journal, 8(1), 17. https://doi.org/10.3390/dj8010017

Amaral M., B. (2006). Citotoxidade in vitro e biocompatibilidade in vivo de compósitos a base de hidroxiapatita, colágeno e quitosana. 2006. 98p. Dissertação de mestrado. Universidade de São Paulo.

Borenfreund, J., A., & Puerner- A. (1985). simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90).Journal of tissue culture methods.

Chaim, O., M., Sade, Y., B., da Silveira, R., B., Toma, L., Kalapothakis., E., Chávez-Olórtegui, C., Mangili, O., C., Gremski., W., von Dietrich., C., P., Nader H., B., & Sanches Veiga S.(2006). Browity. spider dermonecrotic toxin directly induces nephrotoxicity. Toxicol. App. Pharmacol. 15,211(1),64-77.

de Oliveira, L. A., Borges, T. K., Soares, R. O., Buzzi, M., & Kuckelhaus, S. A. S. Methodological Variations Affect the Release of VEGF in Vitro and Fibrinolysis’ Time from Platelet Concentrates. Preprints 2020, 2020030224 (doi: 10.20944/preprints202003.0224.v1).

Dohan Ehrenfest, D. M., Rasmusson, L., & Albrektsson, T. (2009). Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends in biotechnology, 27(3), 158–167. https://doi.org/10.1016/j.tibtech.2008.11.009

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. j., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905

Fotakis, G., & Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology letters, 160(2), 171–177. https://doi.org/10.1016/j.toxlet.2005.07.001

Gillies, R., J., Didier., N., & Denton., M. (1986). Determination of cell number in monolayer cultures. Analytical Biochemistry,Colorado, 1(159).109-113.

He, L., Lin, Y., Hu, X., Zhang, Y., & Wu, H. (2009). A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 108(5), 707–713. https://doi.org/10.1016/j.tripleo.2009.06.044

Huawei, Q,, Hongya, F., Zhenyu, H., & Yang, S. (2019). Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv., 9, 26252. 10.1039/c9ra05214c

Lendeckel, S., Jödicke, A., Christophis, P., Heidinger, K., Wolff, J., Fraser, J. K., Hedrick, M. H., Berthold, L., & Howaldt, H. P. (2004). Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, 32(6), 370–373. https://doi.org/10.1016/j.jcms.2004.06.002

Lisboa, D. G., Fonseca, S. C. da, Stroparo, J. L. de O., Mendes, R. A., Vieira, E. D., Cavalari, V. C., Leão Neto, R. da R., Gabardo , M. C. L. , Deliberador, T. M., Franco, C. R. C., Leão, M. P., & Zielak, J. C. (2021). Characterization and viability of the stromal vascular fraction from the Bichat fat ball associated with platelets-poor plasma - an option for aesthetic treatments. Research, Society and Development, 10(8), e37010817341. https://doi.org/10.33448/rsd-v10i8.17341

Massuda, C. K. M., Souza, R. V. de, Roman-Torres, C. V. G., Marao, H. F., Sendyk, W. R., & Pimentel, A. C. (2020). Aesthetic tissue augmentation with an association of synthetic biomaterial and L-PRF. Research, Society and Development, 9(7), e578974502. https://doi.org/10.33448/rsd-v9i7.4502

Miron, R. J., Zucchelli, G., Pikos, M. A., Salama, M., Lee, S., Guillemette, V., Fujioka-Kobayashi, M., Bishara, M., Zhang, Y., Wang, H. L., Chandad, F., Nacopoulos, C., Simonpieri, A., Aalam, A. A., Felice, P., Sammartino, G., Ghanaati, S., Hernandez, M. A., & Choukroun, J. (2017). Use of platelet-rich fibrin in regenerative dentistry: a systematic review. Clinical oral investigations, 21(6), 1913–1927. https://doi.org/10.1007/s00784-017-2133-z

Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5807–5812. https://doi.org/10.1073/pnas.0937635100

Moraschini, V., & Barboza, E. S. (2015). Effect of autologous platelet concentrates for alveolar socket preservation: a systematic review. International journal of oral and maxillofacial surgery, 44(5), 632–641. https://doi.org/10.1016/j.ijom.2014.12.010

Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

Nakajima, K., Kunimatsu, R., Ando, K., Hiraki, T., Rikitake, K., Tsuka, Y., Abe, T., & Tanimoto, K. (2019). Success rates in isolating mesenchymal stem cells from permanent and deciduous teeth. Scientific reports, 9(1), 16764. https://doi.org/10.1038/s41598-019-53265-4

Naz, S., Khan, F. R., Zohra, R. R., Lakhundi, S. S., Khan, M. S., Mohammed, N., & Ahmad, T. (2019). Isolation and culture of dental pulp stem cells from permanent and deciduous teeth. Pakistan journal of medical sciences, 35(4), 997–1002. https://doi.org/10.12669/pjms.35.4.540

Oliveira, N. A. de, Roballo, K. C. S., Lisboa Neto, A. F. S., Sandini, T. M., Santos, A. C. dos, Martins, D. dos S., & Ambrósio, C. E. (2017). Bioimpressão e produção de mini-órgãos com células tronco. Pesquisa Veterinária Brasileira, 37(9), 1032-1039. 10.1590/s0100-736x2017000900020

Orlic, D., Hill, J. M., & Arai, A. E. (2002). Stem cells for myocardial regeneration. Circulation research, 91(12), 1092–1102. https://doi.org/10.1161/01.res.0000046045.00846.b0

Precheur H. V. (2007). Bone graft materials. Dental clinics of North America, 51(3), 729–viii. https://doi.org/10.1016/j.cden.2007.03.004

Ratnayake, D., & Currie, P. D. (2017). Stem cell dynamics in muscle regeneration: Insights from live imaging in different animal models. BioEssays : news and reviews in molecular, cellular and developmental biology, 39(6), 10.1002/bies.201700011. https://doi.org/10.1002/bies.201700011

Reilly, T. P., Bellevue, F. H., 3rd, Woster, P. M., & Svensson, C. K. (1998). Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone. Biochemical pharmacology, 55(6), 803–810. https://doi.org/10.1016/s0006-2952(97)00547-9

Rosa, A., L., Shareef, M. Y., & Noort, R. V. (2000). Efeito das condições de preparação e sinterização sobre a porosidade da hidroxiapatita. Pesqui Odontol Bras.,14:273-7.

Sanada, J. T., Canova, G. C., Cestari, T. M., Taga, E. M., Taga, R., & Buzalaf, M. A. R. (2003). Análise histológica, radiográfica e do perfil de imunoglobulinas após a implantação de enxerto de osso esponjoso bovino desmineralizado em bloco em músculo de ratos. J Appl Oral Sci., 11:209-15.

Strauer, B. E., Brehm, M., & Schannwell, C. M. (2008). The therapeutic potential of stem cells in heart disease. Cell proliferation, 41 Suppl 1(Suppl 1), 126–145. https://doi.org/10.1111/j.1365-2184.2008.00480.x

Stroparo, J. L. de O., Weiss, S. G., Fonseca, S. C. da, Spisila, L. J., Gonzaga, C. C., Oliveira, G. C. de, Brotto, G. L., Swiech, A. M., Vieira, E. D., Leão Neto, R. da R., Franco, C. R. C., Leão, M. P., Deliberador, T. M., Gabardo, M. C. L., & Zielak, J. C. (2021). Xenogenic bone grafting biomaterials do not interfere in the viability and proliferation of stem cells from human exfoliated deciduous teeth - an in vitro pilot study. Research, Society and Development, 10(4), e34410414249. https://doi.org/10.33448/rsd-v10i4.14249

Yamada, M. K., & Watari, F. (2003). Imaging and non-contact profile analysis of Nd:YAG laser-irradiated teeth by scanning electron microscopy and confocal laser scanning microscopy. Dental materials journal, 22(4), 556–568. https://doi.org/10.4012/dmj.22.556

Downloads

Published

22/08/2021

How to Cite

HEYMOVSKI, J. L. .; LEÃO, M. P. .; STROPARO, J. L. de O.; FONSECA, S. C. da .; SPISILA, L. J. .; GONZAGA, C. C. .; CAVALARI, V. C. .; MENDES, R. A. .; SPINA, D. R. F. .; VIEIRA, E. D. .; LEÃO NETO, R. da R. .; OLIVEIRA, L. A. de .; FRANCO, C. R. C. .; DELIBERADOR, T. M. .; ZIELAK, J. C. . Basic responses of mesenchymal stem cells exposed to bovine biomaterial and platelet rich fibrin. Research, Society and Development, [S. l.], v. 10, n. 11, p. e46101119134, 2021. DOI: 10.33448/rsd-v10i11.19134. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19134. Acesso em: 22 nov. 2024.

Issue

Section

Health Sciences