Respostas básicas de células-tronco mesenquimais expostas ao biomaterial bovino e em fibrina rica em plaquetas
DOI:
https://doi.org/10.33448/rsd-v10i11.19134Palavras-chave:
Células-tronco; Biomaterial; Fibrina rica em plaquetas; Regeneração óssea; Proliferação celular; Medicina regenerativa.Resumo
O arcabouço e a sua interação com as células-tronco mesenquimais são objetos de estudo em bioengenharia e reparo de tecidos. Mecanismos como adesão superficial, proliferação, viabilidade e citotoxicidade são fundamentais para o desenvolvimento de terapias. O presente estudo analisou a influência da fibrina rica em plaquetas (PRF) na viabilidade, citotoxicidade e proliferação de células-tronco mesenquimais de dentes decíduos humanos esfoliados (SHED) em contato com biomaterial de origem bovina. Os grupos estudados foram divididos e analisados da seguinte forma: (S) apenas SHED como Grupo controle; (SB) SHED + biomaterial; (SBP) SHED + biomaterial + PRF. As análises das células semeadas em placas de 24 poços foram realizadas após 24, 48 e 72 horas. Grupos individuais foram submetidos a testes de viabilidade, citotoxicidade e proliferação celular usando vermelho neutro, MTT e cristal violeta, respectivamente, e no grupo de 72 horas foi realizada a microscopia eletrônica de varredura (MEV) para registrar a ultra morfologia celular. Os dados foram submetidos à análise estatística por ANOVA de dois fatores com nível de significância de 5%. Os resultados demonstraram um melhor desempenho na viabilidade / citotoxicidade e proliferação de células-tronco para o grupo (SBP) em relação ao grupo (SB) e ao grupo (S). Os testes estatísticos aplicados mostraram que o fator biomaterial, o tempo e a interação entre eles deram origem a resultados com significância estatística. As SHED submetidas ao biomaterial bovino se apresentaram mais viáveis, proliferativas e com menor toxicidade quando associadas à PRF. A PRF pareceu ativar o metabolismo das células-tronco em cultivo, indicando que tal associação pode trazer um benefício efetivo nos desfechos clínicos.
Referências
Abuarqoub, D., Aslam, N., Jafar, H., Abu Harfil, Z., & Awidi, A. (2020). Biocompatibility of Biodentine™ ® with Periodontal Ligament Stem Cells: In Vitro Study. Dentistry journal, 8(1), 17. https://doi.org/10.3390/dj8010017
Amaral M., B. (2006). Citotoxidade in vitro e biocompatibilidade in vivo de compósitos a base de hidroxiapatita, colágeno e quitosana. 2006. 98p. Dissertação de mestrado. Universidade de São Paulo.
Borenfreund, J., A., & Puerner- A. (1985). simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90).Journal of tissue culture methods.
Chaim, O., M., Sade, Y., B., da Silveira, R., B., Toma, L., Kalapothakis., E., Chávez-Olórtegui, C., Mangili, O., C., Gremski., W., von Dietrich., C., P., Nader H., B., & Sanches Veiga S.(2006). Browity. spider dermonecrotic toxin directly induces nephrotoxicity. Toxicol. App. Pharmacol. 15,211(1),64-77.
de Oliveira, L. A., Borges, T. K., Soares, R. O., Buzzi, M., & Kuckelhaus, S. A. S. Methodological Variations Affect the Release of VEGF in Vitro and Fibrinolysis’ Time from Platelet Concentrates. Preprints 2020, 2020030224 (doi: 10.20944/preprints202003.0224.v1).
Dohan Ehrenfest, D. M., Rasmusson, L., & Albrektsson, T. (2009). Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends in biotechnology, 27(3), 158–167. https://doi.org/10.1016/j.tibtech.2008.11.009
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. j., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905
Fotakis, G., & Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology letters, 160(2), 171–177. https://doi.org/10.1016/j.toxlet.2005.07.001
Gillies, R., J., Didier., N., & Denton., M. (1986). Determination of cell number in monolayer cultures. Analytical Biochemistry,Colorado, 1(159).109-113.
He, L., Lin, Y., Hu, X., Zhang, Y., & Wu, H. (2009). A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 108(5), 707–713. https://doi.org/10.1016/j.tripleo.2009.06.044
Huawei, Q,, Hongya, F., Zhenyu, H., & Yang, S. (2019). Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv., 9, 26252. 10.1039/c9ra05214c
Lendeckel, S., Jödicke, A., Christophis, P., Heidinger, K., Wolff, J., Fraser, J. K., Hedrick, M. H., Berthold, L., & Howaldt, H. P. (2004). Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, 32(6), 370–373. https://doi.org/10.1016/j.jcms.2004.06.002
Lisboa, D. G., Fonseca, S. C. da, Stroparo, J. L. de O., Mendes, R. A., Vieira, E. D., Cavalari, V. C., Leão Neto, R. da R., Gabardo , M. C. L. , Deliberador, T. M., Franco, C. R. C., Leão, M. P., & Zielak, J. C. (2021). Characterization and viability of the stromal vascular fraction from the Bichat fat ball associated with platelets-poor plasma - an option for aesthetic treatments. Research, Society and Development, 10(8), e37010817341. https://doi.org/10.33448/rsd-v10i8.17341
Massuda, C. K. M., Souza, R. V. de, Roman-Torres, C. V. G., Marao, H. F., Sendyk, W. R., & Pimentel, A. C. (2020). Aesthetic tissue augmentation with an association of synthetic biomaterial and L-PRF. Research, Society and Development, 9(7), e578974502. https://doi.org/10.33448/rsd-v9i7.4502
Miron, R. J., Zucchelli, G., Pikos, M. A., Salama, M., Lee, S., Guillemette, V., Fujioka-Kobayashi, M., Bishara, M., Zhang, Y., Wang, H. L., Chandad, F., Nacopoulos, C., Simonpieri, A., Aalam, A. A., Felice, P., Sammartino, G., Ghanaati, S., Hernandez, M. A., & Choukroun, J. (2017). Use of platelet-rich fibrin in regenerative dentistry: a systematic review. Clinical oral investigations, 21(6), 1913–1927. https://doi.org/10.1007/s00784-017-2133-z
Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5807–5812. https://doi.org/10.1073/pnas.0937635100
Moraschini, V., & Barboza, E. S. (2015). Effect of autologous platelet concentrates for alveolar socket preservation: a systematic review. International journal of oral and maxillofacial surgery, 44(5), 632–641. https://doi.org/10.1016/j.ijom.2014.12.010
Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
Nakajima, K., Kunimatsu, R., Ando, K., Hiraki, T., Rikitake, K., Tsuka, Y., Abe, T., & Tanimoto, K. (2019). Success rates in isolating mesenchymal stem cells from permanent and deciduous teeth. Scientific reports, 9(1), 16764. https://doi.org/10.1038/s41598-019-53265-4
Naz, S., Khan, F. R., Zohra, R. R., Lakhundi, S. S., Khan, M. S., Mohammed, N., & Ahmad, T. (2019). Isolation and culture of dental pulp stem cells from permanent and deciduous teeth. Pakistan journal of medical sciences, 35(4), 997–1002. https://doi.org/10.12669/pjms.35.4.540
Oliveira, N. A. de, Roballo, K. C. S., Lisboa Neto, A. F. S., Sandini, T. M., Santos, A. C. dos, Martins, D. dos S., & Ambrósio, C. E. (2017). Bioimpressão e produção de mini-órgãos com células tronco. Pesquisa Veterinária Brasileira, 37(9), 1032-1039. 10.1590/s0100-736x2017000900020
Orlic, D., Hill, J. M., & Arai, A. E. (2002). Stem cells for myocardial regeneration. Circulation research, 91(12), 1092–1102. https://doi.org/10.1161/01.res.0000046045.00846.b0
Precheur H. V. (2007). Bone graft materials. Dental clinics of North America, 51(3), 729–viii. https://doi.org/10.1016/j.cden.2007.03.004
Ratnayake, D., & Currie, P. D. (2017). Stem cell dynamics in muscle regeneration: Insights from live imaging in different animal models. BioEssays : news and reviews in molecular, cellular and developmental biology, 39(6), 10.1002/bies.201700011. https://doi.org/10.1002/bies.201700011
Reilly, T. P., Bellevue, F. H., 3rd, Woster, P. M., & Svensson, C. K. (1998). Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone. Biochemical pharmacology, 55(6), 803–810. https://doi.org/10.1016/s0006-2952(97)00547-9
Rosa, A., L., Shareef, M. Y., & Noort, R. V. (2000). Efeito das condições de preparação e sinterização sobre a porosidade da hidroxiapatita. Pesqui Odontol Bras.,14:273-7.
Sanada, J. T., Canova, G. C., Cestari, T. M., Taga, E. M., Taga, R., & Buzalaf, M. A. R. (2003). Análise histológica, radiográfica e do perfil de imunoglobulinas após a implantação de enxerto de osso esponjoso bovino desmineralizado em bloco em músculo de ratos. J Appl Oral Sci., 11:209-15.
Strauer, B. E., Brehm, M., & Schannwell, C. M. (2008). The therapeutic potential of stem cells in heart disease. Cell proliferation, 41 Suppl 1(Suppl 1), 126–145. https://doi.org/10.1111/j.1365-2184.2008.00480.x
Stroparo, J. L. de O., Weiss, S. G., Fonseca, S. C. da, Spisila, L. J., Gonzaga, C. C., Oliveira, G. C. de, Brotto, G. L., Swiech, A. M., Vieira, E. D., Leão Neto, R. da R., Franco, C. R. C., Leão, M. P., Deliberador, T. M., Gabardo, M. C. L., & Zielak, J. C. (2021). Xenogenic bone grafting biomaterials do not interfere in the viability and proliferation of stem cells from human exfoliated deciduous teeth - an in vitro pilot study. Research, Society and Development, 10(4), e34410414249. https://doi.org/10.33448/rsd-v10i4.14249
Yamada, M. K., & Watari, F. (2003). Imaging and non-contact profile analysis of Nd:YAG laser-irradiated teeth by scanning electron microscopy and confocal laser scanning microscopy. Dental materials journal, 22(4), 556–568. https://doi.org/10.4012/dmj.22.556
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Janaína Lima Heymovski; Moira Pedroso Leão; Jeferson Luis de Oliveira Stroparo; Sabrina Cunha da Fonseca; Lisley Janowski Spisila; Carla Castiglia Gonzaga; Victoria Cruz Cavalari; Rafaela Araújo Mendes; Denis Roberto Falcão Spina; Eduardo Discher Vieira; Roberto da Rocha Leão Neto; Leonel Alves de Oliveira; Célia Regina Cavichiolo Franco; Tatiana Miranda Deliberador; João César Zielak
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.