Asthma and COVID-19: who wins the contested territory of the lower airways?

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20110

Keywords:

Asthma; COVID-19; Lower Airways; SARS-CoV-2.

Abstract

Among the numerous published studies on COVID-19 in a pandemic year, few listed asthma as a comorbidity, making it therefore difficult to draw any solid conclusions. The respiratory allergy and controlled exposures to allergens are associated with significant reductions in the expression of angiotensin-converting enzyme 2 (ACE2), receptor for SARS-CoV-2 entry into human cells. There is a hypothesis that patients with chronic asthma, due to the type 2 inflammatory profile, may be potentially resistant to developing a severe clinical course of COVID-19. The low IFN-g-mediated response in the respiratory tract of asthmatic patients could limit ACE2 expression in the target cells of SARS-CoV-2 infection. The inflammatory profile of the airways in patients with chronic asthma is mainly related to a Th2 response in type-2 asthma, with production of IL-4, IL-13 and IL-5, presenting antagonistic relationship with pro-inflammatory cytokines such as IFN-g, produced at high levels in severe COVID-19. Published studies, for the most part, are retrospective and may have loss of information or present material with limited possibility for more robust and conclusive analysis. It is important to discuss how patients with atopic or nonatopic asthma seem to protect themselves from new coronavirus infection and how asthma affects COVID-19 and the course of the disease, since there is no increased mortality in asthmatic patients with COVID-19 compared to non-asthmatic patients.

References

Ahmadpoor, P., & Rostaing, L. (2020). Why the immune system fails to mount an adaptive immune response to a COVID‐19 infection. Transplant International, 33(7), 824-825. https://doi.org/10.1111/tri.13611.

Alipoor, S.D., Mortaz, E., Jamaati, H., Tabarsi, P., Bayram, H., Varahram, M. & Adcock, I. M. (2021). COVID-19: Molecular and Cellular Response. Front Cell Infect Microbiol, 11, 563085. https://doi.org/10.3389/fcimb.2021.563085.

Chhiba, K.D., Patel, G. B., Vu, T. H. T., Chen, M. M., Guo, A., Kudlaty, E., Mai, Q., Yeh, C., Muhammad, L. N., Harris, K. E., Bochner, B. S., Grammer, L. C., Greenberger, P. A., Kalhan, R., Kuang, F. L., Saltoun, C. A., Schleimer, R. P., Stevens, W. W., & Peters, A. T. (2020). Prevalence and characterization of asthma in hospitalized and nonhospitalized patients with COVID-19. J Allergy Clin Immunol, 146 (2), 307-314.e4. https://doi.org/10.1016/j.jaci.2020.06.010.

Chowdhury, S. D., & Oommen, A. M. (2020). Epidemiology of COVID-19. Journal of Digestive Endoscopy, 11(1), 3-7. https://doi.org/10.1055/s-0040-1712187.

Corrêa, E. J., Vasconcelos, M., & Souza, M. S. L. (2013). Iniciação à metodologia: textos científicos. NESCON UFMG.

Cucinotta, D., & Vanelli, M. (2020). WHO Declares COVID-19 a Pandemic. Acta Biomed, 91(1), 157-160. https://doi.org/10.23750/abm.v91i1.9397.

Gon, Y., & Hashimoto, S. (2018). Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergology International, 67(1), 12-17. https://doi.org/10.1016/j.alit.2017.08.011.

Green, I., Merzon, E., Vinker, S., Golan-Cohen, A., & Magen, E. (2021). COVID-19 Susceptibility in Bronchial Asthma. J Allergy Clin Immunol Pract, 9, 684-92. https://doi.org/10.1016/j.jaip.2020.11.020.

Hardyman, M. A., Wilkinson, E., Martin, E., Jayasekera, N. P., Blume, C., Swindle, E. J., Gozzard, N., Holgate, S. T., Howarth, P. H., Davies, D. E., & Collins, J. E. (2013). TNF-α-mediated bronchial barrier disruption and regulation by src-family kinase activation. J Allergy Clin Immunol, 132(3), 665-675.e8. https://doi.org/10.1016/j.jaci.2013.03.005.

Hu, B., Guo, H., Zhou, P., & Shi, Z-L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol, 19, 141–154. https://doi.org/10.1038/s41579-020-00459-7.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Bin, C. B. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 10223, 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.

Jackson, D. J., Busse, W. W., Bacharier, L. B., Kattan, M., O'Connor, G. T., Wood, R. A., Visness, C. M., Durham, S. R., Larson, D., Esnault, S., Ober, C., Gergen, P. J., Becker, P., Togias, A., Gern, J. E., & Altman, M. C. (2020). Association of respiratory allergy, asthma and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol, 146 (1), 203-206.e3. https://doi.org/10.1016/j.jaci.2020.04.009.

Janssen, N. A. F., Grondman, I., de Nooijer, A. H., Boahen, C. K., Koeken, V. A. C. M., Matzaraki, V., Kumar, V., He, X., Kox, M., Koenen, H. J. P. M., Smeets, R. L., Joosten, I., Brüggemann, R. J. M., Kouijzer, I. J. E., van der Hoeven, H. G., Schouten, J. A., Frenzel, T., Reijers, M. H. E., Hoefsloot, W., & van de Veerdonk, F. L. (2021). Dysregulated innate and adaptive immune responses discriminate disease severity in COVID-19. J Infect Dis, 1, jiab065. https://doi.org/10.1093/infdis/jiab065.

Lambrecht, B. N., & Hammad, H., & Fahy, J. V. (2019). The Cytokines of Asthma. Immunity, 50(4), 975-991. https://doi.org/10.1016/j.immuni.2019.03.018.

Liu, S., Zhi, Y., & Ying, S. (2020). COVID-19 and Asthma: Reflection During the Pandemic. Clinic Rev Allerg Immunol, 59, 78–88. https://doi.org/10.1007/s12016-020-08797-3.

Mendes, N. F., Jara, C. P., Mansour, E., Araújo, E. P., & Velloso, L. A. (2021). Asthma and COVID-19: a systematic review. Allergy Asthma Clin Immunol, 17 (5). https://doi.org/10.1186/s13223-020-00509-y.

Patel, S. J., & Teach, S. J. (2019). Asthma. Pediatrics in Review, 40(11), 549-567. https://doi.org/10.1542/pir.2018-0282.

Saatian, B., Rezaee, F., Desando, S., Emo, J., Chapman, T., Knowlden, S., & Georas, S. N. (2013). Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers, 1(2), e24333. https://doi.org/10.4161/tisb.24333.

Sami, R., Fathi, F., Eskandari, N., Ahmadi, M., ArefNezhad, R., & Motedayyen, H. (2021). Characterizing the immune responses of those who survived or succumbed to COVID-19: Can immunological signatures predict outcome? Cytokine, 140, 155439. https://doi.org/10.1016/j.cyto.2021.155439.

Skevaki, C., Karsonova, A., Karaulov, A., Xie, M., & Renz, H. (2020). Asthma-associated risk for COVID-19 development. J Allergy Clin Immunol, 146, 1295-301. https://doi.org/10.1016/j.jaci.2020.09.017.

World Health Organization (2020). Coronavirus disease (COVID-19) outbreak: rights, roles and responsibilities of health workers, including key considerations for occupational safety and health. https://www.who.int/publications-detail/coronavirus-disease-(covid-19)-outbreak-rights-roles-and-responsibilities-of-health-workers-including-keyconsiderations-for-occupational-safety-and-health.

Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., Tai, Y., Bai, C., Gao, T., Song, J., Xia, P., Dong, J., Zhao, J., & Wang, F. S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 8(4), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X.

Zhang, J. J., Dong, X., Cao, Y. Y., Yuan, Y. D., Yang, Y. B., Yan, Y. Q., Akdis, C. A., & Gao, Y. D. (2020). Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy, 75(7), 1730-174. https://doi.org/10.1111/all.14238.

Downloads

Published

12/09/2021

How to Cite

FRAGA, T. de L. e .; PAULA JUNIOR, W. de; ANDRADE, M. C. Asthma and COVID-19: who wins the contested territory of the lower airways?. Research, Society and Development, [S. l.], v. 10, n. 12, p. e17101220110, 2021. DOI: 10.33448/rsd-v10i12.20110. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20110. Acesso em: 5 jan. 2025.

Issue

Section

Note Preview