Effects of gamma radiation in therapeutic dose on the chemical characteristics of a polycaprolactone/ZnO nanocomposite

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20528

Keywords:

Gamma radiation; Polycaprolactone; ZnO nanoparticles.

Abstract

In this investigation, the influence of gamma radiation in a therapeutic dose, such as the dose generally administered (on average) in two cycles of radiotherapy treatment, was evaluated for the chemical characteristics of nanocomposite films formed by polycaprolactone (PCL) with oxide nanoparticles of ZnO (ZnO NPs). The PCL nanocomposite films with ZnO NPs (PCL/ZnO NCs) were obtained via solvent casting method, using chloroform as solvent, with ZnO NPs mass contents in relation to polymer masses equal to: 02%; 0.4%; 0.6%; 0.8% and 1.0%. After this step, the films obtained were exposed to gamma radiation in a dose of 140 Gy in the presence of air and at room temperature. The influence of gamma radiation in a therapeutic dose on the chemical characteristics of nanocomposite films obtained through the solvent casting method, was accessed through absorption spectroscopy in the infrared region. Our results indicate that the chemical structure of PCL is preserved after exposure to gamma radiation at 140 Gy.

References

Augustine, R., Kalarikkal, N., & Thomas, S. (2016). Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(1), 28–37. https://doi.org/10.1080/00914037.2015.1055628

Augustine, R., Malik, H. N., Singhal, D. K., Mukherjee, A., Malakar, D., Kalarikkal, N., & Thomas, S. (2014). Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. Journal of Polymer Research, 21(3). https://doi.org/10.1007/s10965-013-0347-6

Chang, S. H., Lee, H. J., Park, S., Kim, Y., & Jeong, B. (2018). Fast Degradable Polycaprolactone for Drug Delivery. Biomacromolecules, 19(6), 2302–2307. https://doi.org/10.1021/acs.biomac.8b00266

Cooke, S. L., & Whittington, A. R. (2016). Influence of therapeutic radiation on polycaprolactone and polyurethane biomaterials. Materials Science and Engineering C, 60, 78–83. https://doi.org/10.1016/j.msec.2015.10.089

Silva, W. B., Aquino, K. A. D. S., De Vasconcelos, H. M., & Araujo, E. S. (2013). Influence of copper chloride and potassium iodide mixture in poly(vinyl chloride) exposed to gamma irradiation. Polymer Degradation and Stability, 98(1), 241–245. https://doi.org/10.1016/j.polymdegradstab.2012.10.006

Das, R., Pattanayak, A. J., & Swain, S. K. (2018). Polymer nanocomposites for sensor devices. Polymer-based Nanocomposites for Energy and Environmental Applications: A volume in Woodhead Publishing Series in Composites Science and Engineering. https://doi.org/10.1016/B978-0-08-102262-7.00007-6

Dwivedi, R., Kumar, S., Pandey, R., Mahajan, A., Nandana, D., Katti, D. S., & Mehrotra, D. (2020). Polycaprolactone as biomaterial for bone scaffolds: Review of literature. Journal of Oral Biology and Craniofacial Research, 10(1), 381–388. https://doi.org/10.1016/j.jobcr.2019.10.003

Elen, K., Murariu, M., Peeters, R., Dubois, P., & Mullens, J. (2012). Towards high-performance biopackaging : barrier and mechanical properties of dual-action polycaprolactone/zinc oxide nanocomposites. Polymers Advanced Technologies, 23, 1422-1428. https://doi.org/10.1002/pat.2062

Forster, P. L., Parra, D. F., Lugao, A. B., Kai, J., & Brito, H. F. (2015). Highly luminescent polycaprolactone films doped with diaquatris(thenoyltrifluoroacetonate)europium(III) complex. Journal of Luminescence, 167, 85–90. https://doi.org/10.1016/j.jlumin.2015.05.041

Labet, M., & Thielemans, W. (2009a). Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38(12), 3484–3504. https://doi.org/10.1039/B820162P

Lepot, N., Bael, M. K. Van, Rul, H. Van Den, Haen, J. D., Peeters, R., Franco, D., & Mullens, J. (2010). Influence of Incorporation of ZnO Nanoparticles and Biaxial Orientation on Mechanical and Oxygen Barrier Properties of Polypropylene Films for Food Packaging Applications. Journal of Applied Polymer Science, 120, 1616-1623. https://doi.org/10.1002/app

Lopez-Figueras, L., Navascues, N., & Irusta, S. (2017). Polycaprolactone/mesoporous silica MCM-41 composites prepared by in situ polymerization. Particuology, 30, 135–143. https://doi.org/10.1016/j.partic.2016.05.005

Lyu, J. S., Lee, J. S., & Han, J. (2019). Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-56757-5

Mallakpour, S., & Behranvand, V. (2016). Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications. European Polymer Journal, 84, 377-403. https://doi.org/10.1016/j.eurpolymj.2016.09.028

Mallakpour, S., & Nouruzi, N. (2016). Effec of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites. Polymer (United Kingdom), 89, 94–101. https://doi.org/10.1016/j.polymer.2016.02.038

Mattioli-Belmonte, M., Vozzi, G., Whulanza, Y., Seggiani, M., Fantauzzi, V., Orsini, G., & Ahluwalia, A. (2012). Tuning polycaprolactone-carbon nanotube composites for bone tissue engineering scaffolds. Materials Science and Engineering C, 32(2), 152–159. https://doi.org/10.1016/j.msec.2011.10.010

Paula, M., Diego, I., Dionisio, R., Vinhas, G., & Alves, S. (2019). Gamma irradiation effects on polycaprolactone/zinc oxide nanocomposite films. Polímeros, 29(1), 1–7. https://doi.org/10.1590/0104-1428.04018

Pereira-Loch, C., Benavides, R., Lima, M. F. S., & Huerta, B. M. (2011). Radiation and thermal effects on polymeric immobilization devices used in patients submitted to radiotherapy. Journal of Radiotherapy in Practice, 11(2), 101–106. https://doi.org/10.1017/S1460396911000124

Stewart, S. A., Domínguez-Robles, J., McIlorum, V. J., Gonzalez, Z., Utomo, E., Mancuso, E., Larrañeta, E. (2020). Poly(caprolactone)-Based Coatings on 3D-Printed Biodegradable Implants: A Novel Strategy to Prolong Delivery of Hydrophilic Drugs. Molecular Pharmaceutics, 17(9), 3487–3500. https://doi.org/10.1021/acs.molpharmaceut.0c00515

Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer - Polycaprolactone in the 21st century. Progress in Polymer Science (Oxford), 35(10), 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002

Downloads

Published

26/09/2021

How to Cite

PAULA, M. V. da S. .; ALVES JUNIOR, S. Effects of gamma radiation in therapeutic dose on the chemical characteristics of a polycaprolactone/ZnO nanocomposite. Research, Society and Development, [S. l.], v. 10, n. 12, p. e456101220528, 2021. DOI: 10.33448/rsd-v10i12.20528. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20528. Acesso em: 5 jan. 2025.

Issue

Section

Engineerings