Efeitos da radiação gama em dose terapêutica nas características químicas do nanocompósito policaprolactona/ZnO

Autores

DOI:

https://doi.org/10.33448/rsd-v10i12.20528

Palavras-chave:

Radiação gama; Policaprolactona; Nanopartículas de ZnO.

Resumo

Nesta investigação, a influencia da radiação gama em dose terapeutica, como por exemplo, a dose costumeiramente utilizada (em media) em dois ciclos de tratamento radioterápico, foi avaliada sobre as características químicas de filmes de nanocompósitos formados pela policaprolactona (PCL) com nanopartículas de óxido de ZnO (ZnO NPs). Os filmes de nancompósitos da PCL com ZnO NPs (PCL/ZnO NCs) foram obtidos através do método de solvent casting, utilizando clorofórmio como solvent, com teores em masa de ZnO NPs em relação a massa do polímero iguais a: 02%; 0.4%; 0.6%; 0.8% e 1.0%. Apos essa etapa os filmes obtidos foram expostos a radiação gama na dose de 140 Gy em presenca de ar e em temperatura ambiente. A influência da radiação gama em dose terapeutica nas caracterísiticas químicas dos filmes de nanocompósitos obtidos através do médoto de solvent casting, foi acessada através da espectroscopia de absorção na região do infravermelho. Nossos resultados indicam que a estrutura química da PCL é preservada após a exposição a radiação gama em 140 Gy.

Referências

Augustine, R., Kalarikkal, N., & Thomas, S. (2016). Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(1), 28–37. https://doi.org/10.1080/00914037.2015.1055628

Augustine, R., Malik, H. N., Singhal, D. K., Mukherjee, A., Malakar, D., Kalarikkal, N., & Thomas, S. (2014). Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. Journal of Polymer Research, 21(3). https://doi.org/10.1007/s10965-013-0347-6

Chang, S. H., Lee, H. J., Park, S., Kim, Y., & Jeong, B. (2018). Fast Degradable Polycaprolactone for Drug Delivery. Biomacromolecules, 19(6), 2302–2307. https://doi.org/10.1021/acs.biomac.8b00266

Cooke, S. L., & Whittington, A. R. (2016). Influence of therapeutic radiation on polycaprolactone and polyurethane biomaterials. Materials Science and Engineering C, 60, 78–83. https://doi.org/10.1016/j.msec.2015.10.089

Silva, W. B., Aquino, K. A. D. S., De Vasconcelos, H. M., & Araujo, E. S. (2013). Influence of copper chloride and potassium iodide mixture in poly(vinyl chloride) exposed to gamma irradiation. Polymer Degradation and Stability, 98(1), 241–245. https://doi.org/10.1016/j.polymdegradstab.2012.10.006

Das, R., Pattanayak, A. J., & Swain, S. K. (2018). Polymer nanocomposites for sensor devices. Polymer-based Nanocomposites for Energy and Environmental Applications: A volume in Woodhead Publishing Series in Composites Science and Engineering. https://doi.org/10.1016/B978-0-08-102262-7.00007-6

Dwivedi, R., Kumar, S., Pandey, R., Mahajan, A., Nandana, D., Katti, D. S., & Mehrotra, D. (2020). Polycaprolactone as biomaterial for bone scaffolds: Review of literature. Journal of Oral Biology and Craniofacial Research, 10(1), 381–388. https://doi.org/10.1016/j.jobcr.2019.10.003

Elen, K., Murariu, M., Peeters, R., Dubois, P., & Mullens, J. (2012). Towards high-performance biopackaging : barrier and mechanical properties of dual-action polycaprolactone/zinc oxide nanocomposites. Polymers Advanced Technologies, 23, 1422-1428. https://doi.org/10.1002/pat.2062

Forster, P. L., Parra, D. F., Lugao, A. B., Kai, J., & Brito, H. F. (2015). Highly luminescent polycaprolactone films doped with diaquatris(thenoyltrifluoroacetonate)europium(III) complex. Journal of Luminescence, 167, 85–90. https://doi.org/10.1016/j.jlumin.2015.05.041

Labet, M., & Thielemans, W. (2009a). Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38(12), 3484–3504. https://doi.org/10.1039/B820162P

Lepot, N., Bael, M. K. Van, Rul, H. Van Den, Haen, J. D., Peeters, R., Franco, D., & Mullens, J. (2010). Influence of Incorporation of ZnO Nanoparticles and Biaxial Orientation on Mechanical and Oxygen Barrier Properties of Polypropylene Films for Food Packaging Applications. Journal of Applied Polymer Science, 120, 1616-1623. https://doi.org/10.1002/app

Lopez-Figueras, L., Navascues, N., & Irusta, S. (2017). Polycaprolactone/mesoporous silica MCM-41 composites prepared by in situ polymerization. Particuology, 30, 135–143. https://doi.org/10.1016/j.partic.2016.05.005

Lyu, J. S., Lee, J. S., & Han, J. (2019). Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-56757-5

Mallakpour, S., & Behranvand, V. (2016). Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications. European Polymer Journal, 84, 377-403. https://doi.org/10.1016/j.eurpolymj.2016.09.028

Mallakpour, S., & Nouruzi, N. (2016). Effec of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites. Polymer (United Kingdom), 89, 94–101. https://doi.org/10.1016/j.polymer.2016.02.038

Mattioli-Belmonte, M., Vozzi, G., Whulanza, Y., Seggiani, M., Fantauzzi, V., Orsini, G., & Ahluwalia, A. (2012). Tuning polycaprolactone-carbon nanotube composites for bone tissue engineering scaffolds. Materials Science and Engineering C, 32(2), 152–159. https://doi.org/10.1016/j.msec.2011.10.010

Paula, M., Diego, I., Dionisio, R., Vinhas, G., & Alves, S. (2019). Gamma irradiation effects on polycaprolactone/zinc oxide nanocomposite films. Polímeros, 29(1), 1–7. https://doi.org/10.1590/0104-1428.04018

Pereira-Loch, C., Benavides, R., Lima, M. F. S., & Huerta, B. M. (2011). Radiation and thermal effects on polymeric immobilization devices used in patients submitted to radiotherapy. Journal of Radiotherapy in Practice, 11(2), 101–106. https://doi.org/10.1017/S1460396911000124

Stewart, S. A., Domínguez-Robles, J., McIlorum, V. J., Gonzalez, Z., Utomo, E., Mancuso, E., Larrañeta, E. (2020). Poly(caprolactone)-Based Coatings on 3D-Printed Biodegradable Implants: A Novel Strategy to Prolong Delivery of Hydrophilic Drugs. Molecular Pharmaceutics, 17(9), 3487–3500. https://doi.org/10.1021/acs.molpharmaceut.0c00515

Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer - Polycaprolactone in the 21st century. Progress in Polymer Science (Oxford), 35(10), 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002

Downloads

Publicado

26/09/2021

Como Citar

PAULA, M. V. da S. .; ALVES JUNIOR, S. Efeitos da radiação gama em dose terapêutica nas características químicas do nanocompósito policaprolactona/ZnO. Research, Society and Development, [S. l.], v. 10, n. 12, p. e456101220528, 2021. DOI: 10.33448/rsd-v10i12.20528. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20528. Acesso em: 8 jul. 2024.

Edição

Seção

Engenharias