Efeitos da radiação gama em dose terapêutica nas características químicas do nanocompósito policaprolactona/ZnO
DOI:
https://doi.org/10.33448/rsd-v10i12.20528Palavras-chave:
Radiação gama; Policaprolactona; Nanopartículas de ZnO.Resumo
Nesta investigação, a influencia da radiação gama em dose terapeutica, como por exemplo, a dose costumeiramente utilizada (em media) em dois ciclos de tratamento radioterápico, foi avaliada sobre as características químicas de filmes de nanocompósitos formados pela policaprolactona (PCL) com nanopartículas de óxido de ZnO (ZnO NPs). Os filmes de nancompósitos da PCL com ZnO NPs (PCL/ZnO NCs) foram obtidos através do método de solvent casting, utilizando clorofórmio como solvent, com teores em masa de ZnO NPs em relação a massa do polímero iguais a: 02%; 0.4%; 0.6%; 0.8% e 1.0%. Apos essa etapa os filmes obtidos foram expostos a radiação gama na dose de 140 Gy em presenca de ar e em temperatura ambiente. A influência da radiação gama em dose terapeutica nas caracterísiticas químicas dos filmes de nanocompósitos obtidos através do médoto de solvent casting, foi acessada através da espectroscopia de absorção na região do infravermelho. Nossos resultados indicam que a estrutura química da PCL é preservada após a exposição a radiação gama em 140 Gy.
Referências
Augustine, R., Kalarikkal, N., & Thomas, S. (2016). Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(1), 28–37. https://doi.org/10.1080/00914037.2015.1055628
Augustine, R., Malik, H. N., Singhal, D. K., Mukherjee, A., Malakar, D., Kalarikkal, N., & Thomas, S. (2014). Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. Journal of Polymer Research, 21(3). https://doi.org/10.1007/s10965-013-0347-6
Chang, S. H., Lee, H. J., Park, S., Kim, Y., & Jeong, B. (2018). Fast Degradable Polycaprolactone for Drug Delivery. Biomacromolecules, 19(6), 2302–2307. https://doi.org/10.1021/acs.biomac.8b00266
Cooke, S. L., & Whittington, A. R. (2016). Influence of therapeutic radiation on polycaprolactone and polyurethane biomaterials. Materials Science and Engineering C, 60, 78–83. https://doi.org/10.1016/j.msec.2015.10.089
Silva, W. B., Aquino, K. A. D. S., De Vasconcelos, H. M., & Araujo, E. S. (2013). Influence of copper chloride and potassium iodide mixture in poly(vinyl chloride) exposed to gamma irradiation. Polymer Degradation and Stability, 98(1), 241–245. https://doi.org/10.1016/j.polymdegradstab.2012.10.006
Das, R., Pattanayak, A. J., & Swain, S. K. (2018). Polymer nanocomposites for sensor devices. Polymer-based Nanocomposites for Energy and Environmental Applications: A volume in Woodhead Publishing Series in Composites Science and Engineering. https://doi.org/10.1016/B978-0-08-102262-7.00007-6
Dwivedi, R., Kumar, S., Pandey, R., Mahajan, A., Nandana, D., Katti, D. S., & Mehrotra, D. (2020). Polycaprolactone as biomaterial for bone scaffolds: Review of literature. Journal of Oral Biology and Craniofacial Research, 10(1), 381–388. https://doi.org/10.1016/j.jobcr.2019.10.003
Elen, K., Murariu, M., Peeters, R., Dubois, P., & Mullens, J. (2012). Towards high-performance biopackaging : barrier and mechanical properties of dual-action polycaprolactone/zinc oxide nanocomposites. Polymers Advanced Technologies, 23, 1422-1428. https://doi.org/10.1002/pat.2062
Forster, P. L., Parra, D. F., Lugao, A. B., Kai, J., & Brito, H. F. (2015). Highly luminescent polycaprolactone films doped with diaquatris(thenoyltrifluoroacetonate)europium(III) complex. Journal of Luminescence, 167, 85–90. https://doi.org/10.1016/j.jlumin.2015.05.041
Labet, M., & Thielemans, W. (2009a). Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38(12), 3484–3504. https://doi.org/10.1039/B820162P
Lepot, N., Bael, M. K. Van, Rul, H. Van Den, Haen, J. D., Peeters, R., Franco, D., & Mullens, J. (2010). Influence of Incorporation of ZnO Nanoparticles and Biaxial Orientation on Mechanical and Oxygen Barrier Properties of Polypropylene Films for Food Packaging Applications. Journal of Applied Polymer Science, 120, 1616-1623. https://doi.org/10.1002/app
Lopez-Figueras, L., Navascues, N., & Irusta, S. (2017). Polycaprolactone/mesoporous silica MCM-41 composites prepared by in situ polymerization. Particuology, 30, 135–143. https://doi.org/10.1016/j.partic.2016.05.005
Lyu, J. S., Lee, J. S., & Han, J. (2019). Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-56757-5
Mallakpour, S., & Behranvand, V. (2016). Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications. European Polymer Journal, 84, 377-403. https://doi.org/10.1016/j.eurpolymj.2016.09.028
Mallakpour, S., & Nouruzi, N. (2016). Effec of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites. Polymer (United Kingdom), 89, 94–101. https://doi.org/10.1016/j.polymer.2016.02.038
Mattioli-Belmonte, M., Vozzi, G., Whulanza, Y., Seggiani, M., Fantauzzi, V., Orsini, G., & Ahluwalia, A. (2012). Tuning polycaprolactone-carbon nanotube composites for bone tissue engineering scaffolds. Materials Science and Engineering C, 32(2), 152–159. https://doi.org/10.1016/j.msec.2011.10.010
Paula, M., Diego, I., Dionisio, R., Vinhas, G., & Alves, S. (2019). Gamma irradiation effects on polycaprolactone/zinc oxide nanocomposite films. Polímeros, 29(1), 1–7. https://doi.org/10.1590/0104-1428.04018
Pereira-Loch, C., Benavides, R., Lima, M. F. S., & Huerta, B. M. (2011). Radiation and thermal effects on polymeric immobilization devices used in patients submitted to radiotherapy. Journal of Radiotherapy in Practice, 11(2), 101–106. https://doi.org/10.1017/S1460396911000124
Stewart, S. A., Domínguez-Robles, J., McIlorum, V. J., Gonzalez, Z., Utomo, E., Mancuso, E., Larrañeta, E. (2020). Poly(caprolactone)-Based Coatings on 3D-Printed Biodegradable Implants: A Novel Strategy to Prolong Delivery of Hydrophilic Drugs. Molecular Pharmaceutics, 17(9), 3487–3500. https://doi.org/10.1021/acs.molpharmaceut.0c00515
Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer - Polycaprolactone in the 21st century. Progress in Polymer Science (Oxford), 35(10), 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Marcos Vinícius da Silva Paula; Severino Alves Junior
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.