Mbl-2 gene polymorphisms in pediatric Burkitt lymphoma: an approach based on machine learning techniques

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20561

Keywords:

Machine Learning; Burkitt Lymphoma; MBL-2; Polymorphisms.

Abstract

Introduction: Burkitt lymphoma belongs to the group of non-Hodgkin lymphomas. Although curable in 80% of less advanced stages, it presents in advanced stages in about 75% of cases in Brazil’s Northeast region, requiring urgent and intensive care in the early stages of treatment. Objectives: therefore, this study aimed to verify the participation of MBL-2 gene polymorphisms in the development of Burkitt lymphoma. Methods: In this article, computational approaches based on the Machine Learning technique were used, where we implemented the Random Forest and KMeans algorithms to classify patterns of individuals diagnosed with the disease and, therefore, differentiate them from healthy individuals. A group of 56 patients aged 0 to 18 years, with Burkitt lymphoma, from a reference hospital in the treatment of childhood cancer, was evaluated, together with a control group consisting of 150 samples, all of which were tested for exon 1 polymorphisms and the MBL2 gene -221 and -550 regions. Results: At first, an unsupervised classification was performed, which identified as two the number of groups that best represent the data present in our database, reaching 72.81% accuracy in the separation of patients and controls. Then, the supervised classification was performed, where the classifier obtained a 70.97% success rate, being possible to reach 75% accuracy in the best GridSearch configuration when performing a cross validation. Conclusion: It was not yet possible to conclude about the participation of the evaluated polymorphisms in the development of the BL, however the computational techniques used proved to be very promising for carrying out studies of this nature.

References

Aydin, B., Akyuz, C., Kalkan, N., Kurucu, N., Varan, A., Yalcin, B., & Kutluk, T. (2019). FAB LMB 96 Regimen for Newly Diagnosed Burkitt Lymphoma in Children: Single-center Experience. Journal of Pediatric Hematology/Oncology, 41(1), e7–e11. https://doi.org/10.1097/MPH.0000000000001270

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of machine learning research, 13(2).

Bland, M. (2015). An introduction to medical statistics. Oxford University Press (UK).

Boldt, A. B. W., Culpi, L., Tsuneto, L. T., De Souza, I. R., Kun, J. F. J., & Petzl-Erler, M. L. (2006). Diversity of the MBL2 gene in various Brazilian populations and the case of selection at the mannose-binding lectin locus. Human immunology, 67(9), 722–734.

Bouwman, L. H., Roep, B. O., & Roos, A. (2006). Mannose-binding lectin: Clinical implications for infection, transplantation, and autoimmunity. Human immunology, 67(4–5), 247–256.

Da Cruz, H. L. A., Da Silva, R. C., Segat, L., de Mendonça Gomes, M. S. Z., Brandão, L. A. C., Guimarães, R. L., Santos, F. C.

F., de Lira, L. A. S., Montenegro, L. M. L., & Schindler, H. C. (2013). MBL2 gene polymorphisms and susceptibility to tuberculosis in a northeastern Brazilian population. Infection, Genetics and Evolution, 19, 323–329.

Davidson, I. (2002). Understanding K-means non-hierarchical clustering. SUNY Albany Technical Report, 2, 2–14.

Derinkuyu, B. E., Boyunağa, Ö., Öztunalı, Ç., Tekkeşin, F., Damar, Ç., Alımlı, A. G., & Okur, A. (2016). Imaging features of Burkitt lymphoma in pediatric patients. Diagnostic and Interventional Radiology, 22(1), 95.

Division of Cancer Epidemiology and Genetics—National Cancer Institute (nciglobal,ncienterprise). (2018a, janeiro 1). [CgvHomeLanding]. https://dceg.cancer.gov/

Dozzo, M., Carobolante, F., Donisi, P. M., Scattolin, A., Maino, E., Sancetta, R., Viero, P., & Bassan, R. (2017). Burkitt lymphoma in adolescents and young adults: Management challenges. Adolescent health, medicine and therapeutics, 8, 11.

Eisen, D. P., & Minchinton, R. M. (2003). Impact of mannose-binding lectin on susceptibility to infectious diseases. Clinical Infectious Diseases, 37(11), 1496–1505.

Freedman, A. S., Aster, J. C., & Rosmarin, A. G. (2018). Epidemiology, clinical manifestations, pathologic features, and diagnosis of Burkitt lymphoma.

Graudal, N. A., Madsen, H. O., Tarp, U., Svejgaard, A., Jurik, A. G., Graudal, H. K., & Garred, P. (2000). The association of variant mannose-binding lectin genotypes with radiographic outcome in rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 43(3), 515–521.

Hansen, T. K., Tarnow, L., Thiel, S., Steffensen, R., Parving, H.-H., & Flyvbjerg, A. (2004). Association between mannose-binding lectin and vascular complications in type 1 diabetes. Scandinavian Journal of Immunology, 59(6), 613–613.

Harrison, E., Singh, A., Morris, J., Smith, N. L., Fraczek, M. G., Moore, C. B., & Denning, D. W. (2012). Mannose-binding lectin genotype and serum levels in patients with chronic and allergic pulmonary aspergillosis. International journal of immunogenetics, 39(3), 224–232.

Hassan, R., Klumb, C. E., Felisbino, F. E., Guiretti, D. M., White, L. R., Stefanoff, C. G., Barros, M. H. M., Seuánez, H. N., &

Zalcberg, I. R. (2008). Clinical and demographic characteristics of Epstein-Barr virus-associated childhood Burkitt’s lymphoma in Southeastern Brazil: Epidemiological insights from an intermediate risk region. haematologica, 93(5), 780–783.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer Science & Business Media.

Hecht, J. L., & Aster, J. C. (2000). Molecular biology of Burkitt’s lymphoma. Journal of Clinical Oncology, 18(21), 3707–3721.

Hladnik, U., Braida, L., Boniotto, M., Pirulli, D., Gerin, F., Amoroso, A., & Crovella, S. (2002). Single-tube genotyping of MBL-2 polymorphisms using melting temperature analysis. Clinical and experimental medicine, 2(2), 105–108.

Hsu, J. L., & Glaser, S. L. (2000). Epstein–Barr virus-associated malignancies: Epidemiologic patterns and etiologic implications. Critical reviews in oncology/hematology, 34(1), 27–53.

Jain, A. K., & Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs, New Jersey.

Kakushadze, Z., & Yu, W. (2017). *K-means and cluster models for cancer signatures. Biomolecular Detection and Quantification, 13, 7–31. https://doi.org/10.1016/j.bdq.2017.07.001

Khan, S. A., & Rana, Z. A. (2019). Evaluating performance of software defect prediction models using area under precision-Recall curve (AUC-PR). 2019 2nd International Conference on Advancements in Computational Sciences (ICACS), 1–6.

Kilpatrick, D. C. (2002a). Mannan-binding lectin and its role in innate immunity. Transfusion Medicine, 12(6), 335–352.

Kilpatrick, D. C. (2002b). Mannan-binding lectin: Clinical significance and applications. Biochimica et Biophysica Acta (BBA)-General Subjects, 1572(2–3), 401–413.

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26). Springer.

Lee, K., Jeong, H., Lee, S., & Jeong, W.-K. (2019). CPEM: Accurate cancer type classification based on somatic alterations using an ensemble of a random forest and a deep neural network. Scientific Reports, 9(1), 16927. https://doi.org/10.1038/s41598-019-53034-3

Li, W., Cerise, J. E., Yang, Y., & Han, H. (2017). Application of t-SNE to human genetic data. Journal of Bioinformatics and Computational Biology. https://doi.org/10.1142/S0219720017500172

Lins, A. J. C. C., Muniz, M. T. C., Garcia, A. N. M., Gomes, A. V., Cabral, R. M., & Bastos-Filho, C. J. A. (2017). Using artificial neural networks to select the parameters for the prognostic of mild cognitive impairment and dementia in elderly individuals. Computer Methods and Programs in Biomedicine, 152, 93–104. https://doi.org/10.1016/j.cmpb.2017.09.013

Madsen, H. O., Garred, P., Thiel, S., Kurtzhals, J. A., Lamm, L. U., Ryder, L. P., & Svejgaard, A. (1995). Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. The Journal of Immunology, 155(6), 3013–3020.

Martín-Mateos, M. A., & Piquer Gibert, M. (2016). Primary immunodeficiencies and B-cell lymphomas. Boletín Médico Del Hospital Infantil de México, 73(1), 18–25. https://doi.org/10.1016/j.bmhimx.2015.11.009

Mendonça, T. F., Oliveira, M., Vasconcelos, L. R. S., Pereira, L., Moura, P., Bezerra, M. A. C., Santos, M. N. N., Araújo, A. S., & Cavalcanti, M. S. M. (2010). Association of variant alleles of MBL2 gene with vasoocclusive crisis in children with sickle cell anemia. Blood Cells, Molecules, and Diseases, 44(4), 224–228.

Molyneux, E. M., Rochford, R., Griffin, B., Newton, R., Jackson, G., Menon, G., Harrison, C. J., Israels, T., & Bailey, S. (2012). Burkitt’s lymphoma. The Lancet, 379(9822), 1234–1244.

Moslem, M., Mahmoudabadi, A. Z., Fatahinia, M., & Kheradmand, A. (2015). Mannose-binding lectin serum levels in patients with candiduria. Jundishapur Journal of Microbiology, 8(12).

MWer, S., Dykes, D., & Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids res, 16(3), 1215.

Niitsuma, H., & Okada, T. (2007). Covariance and PCA for Categorical Variables. arXiv:0711.4452 [cs]. http://arxiv.org/abs/0711.4452

Petersen, S. V., Thiel, S., & Jensenius, J. C. (2001). The mannan-binding lectin pathway of complement activation: Biology and disease association. Molecular immunology, 38(2–3), 133–149.

Prati, R. C., Batista, G., & Monard, M. C. (2008). Curvas ROC para avaliação de classificadores. Revista IEEE América Latina, 6(2), 215–222.

QIAamp® DNA Mini and Blood Mini Handbook. Sample & Assay Technologies. ([s.d.]).

Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. Encyclopedia of database systems, 5, 532–538.

Rodrigues-Fernandes, C. I., Pérez-de-Oliveira, M. E., Aristizabal Arboleda, L. P., Fonseca, F. P., Lopes, M. A., Vargas, P. A., & Santos-Silva, A. R. (2020). Clinicopathological analysis of oral Burkitt’s lymphoma in pediatric patients: A systematic review. International Journal of Pediatric Otorhinolaryngology, 134, 110033. https://doi.org/10.1016/j.ijporl.2020.110033

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7

Rugonfalvi-Kiss, S., Endrész, V., Madsen, H. O., Burián, K., Duba, J., Prohászka, Z., Karádi, I., Romics, L., Gönczöl, É., &

Füst, G. (2002). Association of Chlamydia pneumoniae with coronary artery disease and its progression is dependent on the modifying effect of mannose-binding lectin. Circulation, 106(9), 1071–1076.

Salma, M. U. (2016). Pso based fast k-means algorithm for feature selection from high dimensional medical data set. 2016 10th International Conference on Intelligent Systems and Control (ISCO), 1–6.

Sathya, R., & Abraham, A. (2013). Comparison of supervised and unsupervised learning algorithms for pattern classification. International Journal of Advanced Research in Artificial Intelligence, 2(2), 34–38.

Sharma, P. (2019). The Most Comprehensive Guide to K-Means Clustering You’ll Ever Need. URL: https://www. analyticsvidhya. com/blog/2019/08/comprehensiveguide-k-means-clustering.

Silva, J. C. da. (2018, março 13). O Algoritmo da Floresta Aleatória. Medium. https://medium.com/machina-sapiens/o-algoritmo-da-floresta-aleat%C3%B3ria-3545f6babdf8

Silva, W. F. da, Garibaldi, P. M. M., Rosa, L. I. da, Bellesso, M., Clé, D. V., Delamain, M. T., Rego, E. M., Pereira, J., & Rocha, V. (2020). Outcomes of HIV-associated Burkitt Lymphoma in Brazil: High treatment toxicity and refractoriness rates – A multicenter cohort study. Leukemia Research, 89, 106287. https://doi.org/10.1016/j.leukres.2019.106287

Soltani, A., RahmatiRad, S., Pourpak, Z., Alizadeh, Z., Saghafi, S., HajiBeigi, B., Zeidi, M., & Farazmand, A. (2014). Polymorphisms and serum level of mannose-binding lectin: An Iranian survey. Iranian Journal of Allergy, Asthma and Immunology, 428–432.

Swerdlow, S. H., Campo, E., Pileri, S. A., Harris, N. L., Stein, H., Siebert, R., Advani, R., Ghielmini, M., Salles, G. A., Zelenetz, A. D., & Jaffe, E. S. (2016). The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood, 127(20), 2375–2390. https://doi.org/10.1182/blood-2016-01-643569

Tsutsumi, A., Ikegami, H., Takahashi, R., Murata, H., Goto, D., Matsumoto, I., Fujisawa, T., & Sumida, T. (2003). Mannose binding lectin gene polymorphism in patients with type I diabetes. Human Immunology, 64(6), 621–624. https://doi.org/10.1016/S0198-8859(03)00054-5

Van Der Aalst, W. (2016). Data science in action. In Process mining (p. 3–23). Springer.

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).

Vardiman, J. W., Arber, D. A., Brunning, R. D., Larson, R. A., Matutes, E., Baumann, I., Swerdlow, S. H., Campo, E., Harris, N. L., & Jaffe, E. S. (2008). WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer.

Watanabe, S. (1985). Pattern recognition: Human and mechanical. John Wiley & Sons, Inc.

White, L. R. (2004). Análise de polimorfismo do promotor dos genes da interleuccina 10 e do fator de necrose tumoral como fator de suscetibilidade genética em linfomas de Burkitt de crianças. 126–126.

Xu, R., & Wunsch, D. C. (2005). Survey of clustering algorithms.

Downloads

Published

26/09/2021

How to Cite

MEDEIROS, J. W. de; LINS, A. J. da C. C.; SAMUEL, O. W.; LIMA, E. L. S. de; GALVÃO, M. L. T. de C.; SILVA, B. O.; ALBUQUERQUE, G. S.; LIMA, L. P. O. de; MUNIZ, M. T. C. Mbl-2 gene polymorphisms in pediatric Burkitt lymphoma: an approach based on machine learning techniques. Research, Society and Development, [S. l.], v. 10, n. 12, p. e444101220561, 2021. DOI: 10.33448/rsd-v10i12.20561. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20561. Acesso em: 5 jan. 2025.

Issue

Section

Health Sciences