Polimorfismos del gen MBL-2 en el linfoma de Burkitt pediátrico: un enfoque basado en técnicas de aprendizaje automático
DOI:
https://doi.org/10.33448/rsd-v10i12.20561Palabras clave:
Linfoma de Burkitt; MBL-2; Aprendizaje automático; Polimorfismo.Resumen
Antecedentes: El linfoma de Burkitt pertenece al grupo de los linfomas no Hodgkin. Aunque curable en el 80% de los estadios menos avanzados, se presenta en estadios avanzados en aproximadamente 75% de los casos en el noreste de Brasil, requiriendo atención urgente e intensiva en las primeras etapas del tratamiento. Objetivos: de esta manera, este estudio tuvo como objetivo verificar la participación de polimorfismos del gen MBL-2 en el desarrollo del linfoma de Burkitt. Métodos: En este artículo utilizamos enfoques computacionales basados en la técnica de Machine Learning, para lo cual se utilizaron los algoritmos Random Forest y KMeans para clasificar patrones de individuos diagnosticados con la enfermedad y, con ellos, diferenciarlos de individuos sanos. Se evaluó un grupo de 56 pacientes con linfoma de Burkitt, de 0 a 18 años, de un hospital de referencia para el tratamiento de cáncer infantil, y un grupo de control que constaba de 150 muestras de individuos, todos analizados para exón 1 y polimorfismos. 221 y -550 del gen MBL2. Resultados: Inicialmente se realizó una clasificación no supervisada, que identificó como dos el número de grupos que mejor representan los datos presentes en nuestra base de datos, alcanzando un 72,81% de precisión en la separación de pacientes y controles. Luego, se realizó la clasificación supervisada, donde el clasificador obtuvo una tasa de éxito del 70,97%, siendo posible alcanzar el 75% de acierto en la mejor configuración de GridSearch al realizar una validación cruzada. Conclusión: En este estudio aún no se pudo concluir sobre la participación de los polimorfismos evaluados en el desarrollo del BL, sin embargo las técnicas computacionales empleadas resultaron ser muy prometedoras para la realización de estudios de esta naturaleza.
Citas
Aydin, B., Akyuz, C., Kalkan, N., Kurucu, N., Varan, A., Yalcin, B., & Kutluk, T. (2019). FAB LMB 96 Regimen for Newly Diagnosed Burkitt Lymphoma in Children: Single-center Experience. Journal of Pediatric Hematology/Oncology, 41(1), e7–e11. https://doi.org/10.1097/MPH.0000000000001270
Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of machine learning research, 13(2).
Bland, M. (2015). An introduction to medical statistics. Oxford University Press (UK).
Boldt, A. B. W., Culpi, L., Tsuneto, L. T., De Souza, I. R., Kun, J. F. J., & Petzl-Erler, M. L. (2006). Diversity of the MBL2 gene in various Brazilian populations and the case of selection at the mannose-binding lectin locus. Human immunology, 67(9), 722–734.
Bouwman, L. H., Roep, B. O., & Roos, A. (2006). Mannose-binding lectin: Clinical implications for infection, transplantation, and autoimmunity. Human immunology, 67(4–5), 247–256.
Da Cruz, H. L. A., Da Silva, R. C., Segat, L., de Mendonça Gomes, M. S. Z., Brandão, L. A. C., Guimarães, R. L., Santos, F. C.
F., de Lira, L. A. S., Montenegro, L. M. L., & Schindler, H. C. (2013). MBL2 gene polymorphisms and susceptibility to tuberculosis in a northeastern Brazilian population. Infection, Genetics and Evolution, 19, 323–329.
Davidson, I. (2002). Understanding K-means non-hierarchical clustering. SUNY Albany Technical Report, 2, 2–14.
Derinkuyu, B. E., Boyunağa, Ö., Öztunalı, Ç., Tekkeşin, F., Damar, Ç., Alımlı, A. G., & Okur, A. (2016). Imaging features of Burkitt lymphoma in pediatric patients. Diagnostic and Interventional Radiology, 22(1), 95.
Division of Cancer Epidemiology and Genetics—National Cancer Institute (nciglobal,ncienterprise). (2018a, janeiro 1). [CgvHomeLanding]. https://dceg.cancer.gov/
Dozzo, M., Carobolante, F., Donisi, P. M., Scattolin, A., Maino, E., Sancetta, R., Viero, P., & Bassan, R. (2017). Burkitt lymphoma in adolescents and young adults: Management challenges. Adolescent health, medicine and therapeutics, 8, 11.
Eisen, D. P., & Minchinton, R. M. (2003). Impact of mannose-binding lectin on susceptibility to infectious diseases. Clinical Infectious Diseases, 37(11), 1496–1505.
Freedman, A. S., Aster, J. C., & Rosmarin, A. G. (2018). Epidemiology, clinical manifestations, pathologic features, and diagnosis of Burkitt lymphoma.
Graudal, N. A., Madsen, H. O., Tarp, U., Svejgaard, A., Jurik, A. G., Graudal, H. K., & Garred, P. (2000). The association of variant mannose-binding lectin genotypes with radiographic outcome in rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 43(3), 515–521.
Hansen, T. K., Tarnow, L., Thiel, S., Steffensen, R., Parving, H.-H., & Flyvbjerg, A. (2004). Association between mannose-binding lectin and vascular complications in type 1 diabetes. Scandinavian Journal of Immunology, 59(6), 613–613.
Harrison, E., Singh, A., Morris, J., Smith, N. L., Fraczek, M. G., Moore, C. B., & Denning, D. W. (2012). Mannose-binding lectin genotype and serum levels in patients with chronic and allergic pulmonary aspergillosis. International journal of immunogenetics, 39(3), 224–232.
Hassan, R., Klumb, C. E., Felisbino, F. E., Guiretti, D. M., White, L. R., Stefanoff, C. G., Barros, M. H. M., Seuánez, H. N., &
Zalcberg, I. R. (2008). Clinical and demographic characteristics of Epstein-Barr virus-associated childhood Burkitt’s lymphoma in Southeastern Brazil: Epidemiological insights from an intermediate risk region. haematologica, 93(5), 780–783.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer Science & Business Media.
Hecht, J. L., & Aster, J. C. (2000). Molecular biology of Burkitt’s lymphoma. Journal of Clinical Oncology, 18(21), 3707–3721.
Hladnik, U., Braida, L., Boniotto, M., Pirulli, D., Gerin, F., Amoroso, A., & Crovella, S. (2002). Single-tube genotyping of MBL-2 polymorphisms using melting temperature analysis. Clinical and experimental medicine, 2(2), 105–108.
Hsu, J. L., & Glaser, S. L. (2000). Epstein–Barr virus-associated malignancies: Epidemiologic patterns and etiologic implications. Critical reviews in oncology/hematology, 34(1), 27–53.
Jain, A. K., & Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs, New Jersey.
Kakushadze, Z., & Yu, W. (2017). *K-means and cluster models for cancer signatures. Biomolecular Detection and Quantification, 13, 7–31. https://doi.org/10.1016/j.bdq.2017.07.001
Khan, S. A., & Rana, Z. A. (2019). Evaluating performance of software defect prediction models using area under precision-Recall curve (AUC-PR). 2019 2nd International Conference on Advancements in Computational Sciences (ICACS), 1–6.
Kilpatrick, D. C. (2002a). Mannan-binding lectin and its role in innate immunity. Transfusion Medicine, 12(6), 335–352.
Kilpatrick, D. C. (2002b). Mannan-binding lectin: Clinical significance and applications. Biochimica et Biophysica Acta (BBA)-General Subjects, 1572(2–3), 401–413.
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26). Springer.
Lee, K., Jeong, H., Lee, S., & Jeong, W.-K. (2019). CPEM: Accurate cancer type classification based on somatic alterations using an ensemble of a random forest and a deep neural network. Scientific Reports, 9(1), 16927. https://doi.org/10.1038/s41598-019-53034-3
Li, W., Cerise, J. E., Yang, Y., & Han, H. (2017). Application of t-SNE to human genetic data. Journal of Bioinformatics and Computational Biology. https://doi.org/10.1142/S0219720017500172
Lins, A. J. C. C., Muniz, M. T. C., Garcia, A. N. M., Gomes, A. V., Cabral, R. M., & Bastos-Filho, C. J. A. (2017). Using artificial neural networks to select the parameters for the prognostic of mild cognitive impairment and dementia in elderly individuals. Computer Methods and Programs in Biomedicine, 152, 93–104. https://doi.org/10.1016/j.cmpb.2017.09.013
Madsen, H. O., Garred, P., Thiel, S., Kurtzhals, J. A., Lamm, L. U., Ryder, L. P., & Svejgaard, A. (1995). Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. The Journal of Immunology, 155(6), 3013–3020.
Martín-Mateos, M. A., & Piquer Gibert, M. (2016). Primary immunodeficiencies and B-cell lymphomas. Boletín Médico Del Hospital Infantil de México, 73(1), 18–25. https://doi.org/10.1016/j.bmhimx.2015.11.009
Mendonça, T. F., Oliveira, M., Vasconcelos, L. R. S., Pereira, L., Moura, P., Bezerra, M. A. C., Santos, M. N. N., Araújo, A. S., & Cavalcanti, M. S. M. (2010). Association of variant alleles of MBL2 gene with vasoocclusive crisis in children with sickle cell anemia. Blood Cells, Molecules, and Diseases, 44(4), 224–228.
Molyneux, E. M., Rochford, R., Griffin, B., Newton, R., Jackson, G., Menon, G., Harrison, C. J., Israels, T., & Bailey, S. (2012). Burkitt’s lymphoma. The Lancet, 379(9822), 1234–1244.
Moslem, M., Mahmoudabadi, A. Z., Fatahinia, M., & Kheradmand, A. (2015). Mannose-binding lectin serum levels in patients with candiduria. Jundishapur Journal of Microbiology, 8(12).
MWer, S., Dykes, D., & Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids res, 16(3), 1215.
Niitsuma, H., & Okada, T. (2007). Covariance and PCA for Categorical Variables. arXiv:0711.4452 [cs]. http://arxiv.org/abs/0711.4452
Petersen, S. V., Thiel, S., & Jensenius, J. C. (2001). The mannan-binding lectin pathway of complement activation: Biology and disease association. Molecular immunology, 38(2–3), 133–149.
Prati, R. C., Batista, G., & Monard, M. C. (2008). Curvas ROC para avaliação de classificadores. Revista IEEE América Latina, 6(2), 215–222.
QIAamp® DNA Mini and Blood Mini Handbook. Sample & Assay Technologies. ([s.d.]).
Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. Encyclopedia of database systems, 5, 532–538.
Rodrigues-Fernandes, C. I., Pérez-de-Oliveira, M. E., Aristizabal Arboleda, L. P., Fonseca, F. P., Lopes, M. A., Vargas, P. A., & Santos-Silva, A. R. (2020). Clinicopathological analysis of oral Burkitt’s lymphoma in pediatric patients: A systematic review. International Journal of Pediatric Otorhinolaryngology, 134, 110033. https://doi.org/10.1016/j.ijporl.2020.110033
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7
Rugonfalvi-Kiss, S., Endrész, V., Madsen, H. O., Burián, K., Duba, J., Prohászka, Z., Karádi, I., Romics, L., Gönczöl, É., &
Füst, G. (2002). Association of Chlamydia pneumoniae with coronary artery disease and its progression is dependent on the modifying effect of mannose-binding lectin. Circulation, 106(9), 1071–1076.
Salma, M. U. (2016). Pso based fast k-means algorithm for feature selection from high dimensional medical data set. 2016 10th International Conference on Intelligent Systems and Control (ISCO), 1–6.
Sathya, R., & Abraham, A. (2013). Comparison of supervised and unsupervised learning algorithms for pattern classification. International Journal of Advanced Research in Artificial Intelligence, 2(2), 34–38.
Sharma, P. (2019). The Most Comprehensive Guide to K-Means Clustering You’ll Ever Need. URL: https://www. analyticsvidhya. com/blog/2019/08/comprehensiveguide-k-means-clustering.
Silva, J. C. da. (2018, março 13). O Algoritmo da Floresta Aleatória. Medium. https://medium.com/machina-sapiens/o-algoritmo-da-floresta-aleat%C3%B3ria-3545f6babdf8
Silva, W. F. da, Garibaldi, P. M. M., Rosa, L. I. da, Bellesso, M., Clé, D. V., Delamain, M. T., Rego, E. M., Pereira, J., & Rocha, V. (2020). Outcomes of HIV-associated Burkitt Lymphoma in Brazil: High treatment toxicity and refractoriness rates – A multicenter cohort study. Leukemia Research, 89, 106287. https://doi.org/10.1016/j.leukres.2019.106287
Soltani, A., RahmatiRad, S., Pourpak, Z., Alizadeh, Z., Saghafi, S., HajiBeigi, B., Zeidi, M., & Farazmand, A. (2014). Polymorphisms and serum level of mannose-binding lectin: An Iranian survey. Iranian Journal of Allergy, Asthma and Immunology, 428–432.
Swerdlow, S. H., Campo, E., Pileri, S. A., Harris, N. L., Stein, H., Siebert, R., Advani, R., Ghielmini, M., Salles, G. A., Zelenetz, A. D., & Jaffe, E. S. (2016). The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood, 127(20), 2375–2390. https://doi.org/10.1182/blood-2016-01-643569
Tsutsumi, A., Ikegami, H., Takahashi, R., Murata, H., Goto, D., Matsumoto, I., Fujisawa, T., & Sumida, T. (2003). Mannose binding lectin gene polymorphism in patients with type I diabetes. Human Immunology, 64(6), 621–624. https://doi.org/10.1016/S0198-8859(03)00054-5
Van Der Aalst, W. (2016). Data science in action. In Process mining (p. 3–23). Springer.
Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).
Vardiman, J. W., Arber, D. A., Brunning, R. D., Larson, R. A., Matutes, E., Baumann, I., Swerdlow, S. H., Campo, E., Harris, N. L., & Jaffe, E. S. (2008). WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer.
Watanabe, S. (1985). Pattern recognition: Human and mechanical. John Wiley & Sons, Inc.
White, L. R. (2004). Análise de polimorfismo do promotor dos genes da interleuccina 10 e do fator de necrose tumoral como fator de suscetibilidade genética em linfomas de Burkitt de crianças. 126–126.
Xu, R., & Wunsch, D. C. (2005). Survey of clustering algorithms.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Jonathan Wagner de Medeiros; Anthony José da Cunha Carneiro Lins; Oluwarotimi Williams Samuel; Elker Lene Santos de Lima; Maria Luiza Tabosa de Carvalho Galvão; Bárbara Oliveira Silva; Giwellington Silva Albuquerque; Luísa Priscilla Oliveira de Lima; Maria Tereza Cartaxo Muniz
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.