Systematic review of the antidepressant activity and associated antioxidant and anti-inflammatory effects of flavonoids in rodents

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20673

Keywords:

Depression; Antidepressant; Flavonoids; Animal model.

Abstract

Introduction: Flavonoids have received an increasing attention from the scientific community in the last decade due to its antioxidant and anti-inflammatory effects, showing benefits in various conditions, including major depression in animal models. The aim of this study was to review the evidence produced in the last 10 years regarding the antidepressant, antioxidant and anti-inflammatory effect of flavonoids in rodent models of depression. Material and methods: It was performed a systematic review to gather articles published between 2009 and 2019 that evaluate those effects of flavonoids in rodent models of depression. Results: 43 studies were included in the review. The most frequently studied flavonoids were hesperidin (14%) and baicalin (9%). The major natural source of flavonoids were citrus fruits (19%) and Scutellaria baicalensis Georgi (9%).  Mice were used in the majority of the studies (86%). The majority of the studies did not use a specific model of depression (40%), and the most frequently used one was Chronic Unpredictable Mild Stress (21%). The most frequently used behavioral tests were forced swim test (81%), tail suspension test (56%) and open field test (51%). Discussion: Considering total tests, 93% of them presented an antidepressant activity, and all the studies that evaluated oxidative stress (37%) and inflammation (39%) found a significant antioxidant and anti-inflammatory result, respectively. Conclusions: Those findings demonstrate that the antidepressant, antioxidant and anti-inflammatory effects of flavonoids that were already evidenced in the study of other pathological conditions are also present in rodent depression models.

References

An, L., Li, J., Yu, S. T., Xue, R., Yu, N. J., Chen, H. X., Zhang, L. M., Zhao, N., Li, Y. F., & Zhang, Y. Z. (2015). Effects of the total flavonoid extract of Xiaobuxin-Tang on depression-like behavior induced by lipopolysaccharide and proinflammatory cytokine levels in mice. Journal of ethnopharmacology, 163, 83–87.

Antoniuk, S., Bijata, M., Ponimaskin, E., & Wlodarczyk, J. (2019). Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neuroscience and biobehavioral reviews, 99, 101–116.

Barboza O.S., Silva, D.A. (2015). Medicamentos antidepressivos e antipsicóticos prescritos no Centro de Atenção Psicossocial (CAPS) do Município de Porciúncula–RJ. Acta Biomedica Brasiliensia,3(1), 85-97.

Can, A., Dao, D. T., Arad, M., Terrillion, C. E., Piantadosi, S. C., & Gould, T. D. (2012). The mouse forced swim test. Journal of visualized experiments : JoVE, (59), e3638.

Comassetto, M. E., Pinto, T. D. S. K., Prestes, E. B., Lopes, R. I. L., Júnior, W. R. B., & Antunes, N. S. (2018). Sintomas Depressivos - Causas e Efeitos em Jovens De Escolas De Sapucaia Do Sul. Revista Thema, 15(4), 1486-1492.

Cryan, J. F., Mombereau, C., & Vassout, A. (2005). The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neuroscience and biobehavioral reviews, 29(4-5), 571–625.

de la Garza, A. L., Garza-Cuellar, M. A., Silva-Hernandez, I. A., Cardenas-Perez, R. E., Reyes-Castro, L. A., Zambrano, E., Gonzalez-Hernandez, B., Garza-Ocañas, L., Fuentes-Mera, L., & Camacho, A. (2019). Maternal Flavonoids Intake Reverts Depression-Like Behaviour in Rat Female Offspring. Nutrients, 11(3), 572.

Detke M.J., & Lucki I. (1995). Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behavioural brain research, 73(1-2): 43-46.

Donato, F., Borges Filho, C., Giacomeli, R., Alvater, E. E., Del Fabbro, L., Antunes, M., de Gomes, M. G., Goes, A. T., Souza, L. C., Boeira, S. P., & Jesse, C. R. (2015). Evidence for the Involvement of Potassium Channel Inhibition in the Antidepressant-Like Effects of Hesperidin in the Tail Suspension Test in Mice. Journal of medicinal food, 18(7), 818–823.

Donato, F., de Gomes, M. G., Goes, A. T., Filho, C. B., Del Fabbro, L., Antunes, M. S., Souza, L. C., Boeira, S. P., & Jesse, C. R. (2014). Hesperidin exerts antidepressant-like effects in acute and chronic treatments in mice: possible role of l-arginine-NO-cGMP pathway and BDNF levels. Brain research bulletin, 104, 19–26.

Du, B., Tang, X., Liu, F., Zhang, C., Zhao, G., Ren, F., & Leng, X. (2014). Antidepressant-like effects of the hydroalcoholic extracts of Hemerocallis citrina and its potential active components. BMC complementary and alternative medicine, 14, 326.

Herrera-Ruiz, M., Santillán-Urquiza, M. A., Romero-Cerecero, O., Zamilpa, A., Jiménez-Ferrer, E., & Tortoriello, J. (2020). Antidepressant-Like Effect of Bauhinia blakeana Dunn in a Neuroinflammation Model in Mice. Medical principles and practice: international journal of the Kuwait University, Health Science Centre, 29(2), 113–120.

Huerta-Reyes, M., Herrera-Ruiz, M., González-Cortazar, M., Zamilpa, A., León, E., Reyes-Chilpa, R., Aguilar-Rojas, A., & Tortoriello, J. (2013). Neuropharmacological in vivo effects and phytochemical profile of the extract from the aerial parts of Heteropterys brachiata (L.) DC. (Malpighiaceae). Journal of ethnopharmacology, 146(1), 311–317.

Iannaccone, P. M., & Jacob, H. J. (2009). Rats!. Disease models & mechanisms, 2(5-6), 206–210.

Jäger A.K., Saaby L. (2011). Flavonóides e o SNC. Molecules,16(2), 1471-1485.

Kim, J., Wie, M. B., Ahn, M., Tanaka, A., Matsuda, H., & Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: a review. Anatomy & cell biology, 52(4), 369–377.

Liu, Y., Lan, N., Ren, J., Wu, Y., Wang, S. T., Huang, X. F., & Yu, Y. (2015). Orientin improves depression-like behavior and BDNF in chronic stressed mice. Molecular nutrition & food research, 59(6), 1130–1142.

Morley J. E. (2017). The effectiveness and harms of antidepressants. Journal of the American Medical Directors Association, 18(4), 279-281.

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of nutritional science, 5, e47.

Sarris, J., Panossian, A., Schweitzer, I., Stough, C., & Scholey, A. (2011). Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 21(12), 841–860.

Seibenhener, M. L., & Wooten, M. C. (2015). Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. Journal of visualized experiments JoVE, (96), e52434.

Shuo T., Mingsan, M. (2014). Chemistry, Pharmacology and Clinical Application Characteristics for Cynomorium. Chi Journal of Chinese Medicine, 2; 40.

Zhang, K., He, M., Wang, F., Zhang, H., Li, Y., Yang, J., & Wu, C. (2019). Revealing Antidepressant Mechanisms of Baicalin in Hypothalamus Through Systems Approaches in Corticosterone- Induced Depressed Mice. Frontiers in neuroscience, 13, 834.

Zhao, Q., Chen, X. Y., & Martin, C. (2016). Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Science bulletin, 61(18), 1391–1398.

Downloads

Published

26/09/2021

How to Cite

BARROSO, L. K. D.; ESMERALDO, M. A.; DE OLIVEIRA, I. C.; RODRIGUES JUNIOR, M. C.; SILVA, N. S. Systematic review of the antidepressant activity and associated antioxidant and anti-inflammatory effects of flavonoids in rodents. Research, Society and Development, [S. l.], v. 10, n. 12, p. e410101220673, 2021. DOI: 10.33448/rsd-v10i12.20673. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20673. Acesso em: 5 jan. 2025.

Issue

Section

Health Sciences