Low cost ceramic membrane for treatment of oily effluents

Authors

DOI:

https://doi.org/10.33448/rsd-v10i13.21071

Keywords:

Low cost membrane; Ceramic membrane; Brasgel clay; Oil water emulsion.

Abstract

Water pollution is one of society's greatest challenges. Several contaminants come into contact with large volumes of water, compromising its quality parameters. Among the contaminants, the large number of industrial activities responsible for the generation of oily effluents stand out for their impacts on the environment, affecting, for example, the maintenance of marine life and the productivity of soils. Among the treatment techniques, the use of ceramic membranes stands out for its high efficiency in the treatment of oily effluents, mainly oil-water emulsions. In line with the development of green chemistry, associated with low cost, this work aims to prepare ceramic membranes using brasgel clay, abundant in the state of Paraíba, The clay was characterized using the techniques of X-Ray Diffraction, Energy Dispersive X-ray Fluorescence Spectroscopy, Infrared Spectroscopy, Physical Nitrogen Adsorption, Thermal Analysis. The membrane was obtained through the uniaxial dry compaction technique and sintered at 650 °C, with water flow and permeate flow being carried out to obtain the membrane rejection coefficient. The results obtained indicate that the brasgel clay has all the characteristics corresponding to smectite, and the low cost membrane had a high rejection, 100.00 %, which makes it viable for the treatment of oil-water emulsions.

Author Biographies

Leonardo Romero Brito Silva, Universidade Federal de Campina Grande

Centro de Ciências e Tecnologia - CCT

Unidade Acadêmica de Engenharia Química - UAEQ

Laboratório de Desenvolvimento de Novos Materiais - LABNOV

Francisco Alex de Sousa Silva, Universidade Federal de Campina Grande

Centro de Ciências e Tecnologia - CCT

Unidade Acadêmica de Engenharia Química - UAEQ

Laboratório de Desenvolvimento de Novos Materiais - LABNOV

Tellys Lins Almeida Barbosa, Universidade Federal de Campina Grande

Centro de Ciências e Tecnologia - CCT

Unidade Acadêmica de Engenharia Química - UAEQ

Laboratório de Desenvolvimento de Novos Materiais - LABNOV

References

Adebajo, M. O., Frost, R. L., Kloprogge, J. T., Carmody, O., & Kokot, S. (2003). Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. Journal of Porous Materials, 10(3), 159–170. https://doi.org/10.1023/A:1027484117065

Akçay, M. (2004). Characterization and determination of the thermodynamic and kinetic properties of p-CP adsorption onto organophilic bentonite from aqueous solution. Journal of Colloid and Interface Science, 280(2), 299–304. https://doi.org/10.1016/j.jcis.2004.07.030

Al-Mutairi, N., Bufarsan, A., & Al-Rukaibi, F. (2008). Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere, 74(1), 142–148. https://doi.org/10.1016/j.chemosphere.2008.08.020

Alzahrani, S., & Mohammad, A. W. (2014). Challenges and trends in membrane technology implementation for produced water treatment: A review. Journal of Water Process Engineering, 4(C), 107–133. https://doi.org/10.1016/j.jwpe.2014.09.007

Araújo, A. B. de F. S., Carmo, E. S. do., Silva, L. R. B., Barbosa, T. L. A., & Rodrigues, M. G. F. (2021). Produção de membrana de baixo custo e sua utilização no processo de separação emulsão óleo/água. In Anais do IV CONEPETRO E VI WEPETRO.

Auerbach, S. M., Carrado, K. A., & Dutta, P. K. (2003). Handbook of Zeolite Science and Technology.

Barbosa, A. S., Barbosa, A. S., & Rodrigues, M. G. F. (2018). Contaminants removal in wastewater using membrane adsorbents zeolite Y/Alpha-Alumina. Materials Science Forum, 912 MSF, 12–15. https://doi.org/10.4028/www.scientific.net/MSF.912.12

Barbosa, A. S., Barbosa, A. S., & Rodrigues, M. G. F. (2019). Influence of the methodology on the formation of zeolite membranes MCM-22 for the oil/water emulsion separation. Ceramica, 65(376), 531–540. https://doi.org/10.1590/0366-69132019653762676

Barbosa, A. dos S., Barbosa, A. dos S., & Rodrigues, M. G. F. (2015). Synthesis of MCM-22 zeolite membrane on a porous alumina support. Materials Science Forum, 805, 272–278. https://doi.org/10.4028/www.scientific.net/MSF.805.272

Barbosa, A. dos S., Barbosa, A. dos S., Barbosa, T. L. A., & Rodrigues, M. G. F. (2018). Synthesis of zeolite membrane (NaY/alumina): Effect of precursor of ceramic support and its application in the process of oil–water separation. Separation and Purification Technology, 200, 141–154. https://doi.org/10.1016/j.seppur.2018.02.001

Barbosa, A. S., Barbosa, A. S., & Rodrigues, M. G. F. (2015). Synthesis of zeolite membrane (MCM-22/α-alumina) and its application in the process of oil-water separation. Desalination and Water Treatment, 56(13), 3665–3672. https://doi.org/10.1080/19443994.2014.995719

Barbosa, A. S., Barbosa, A. S., & Rodrigues, M. G. F. (2019). Y-type zeolite membranes: Synthesis by secondary by method and application in treatment of oily effluents. Materials Science Forum, 958 MSF, 23–28. https://doi.org/10.4028/www.scientific.net/MSF.958.23

Barbosa, T. L. A., Silva, F. M. N., Barbosa, A. S., Lima, E. G., Rodrigues, M. G. F., Federal, U., Grande, D. C., & Grande, C. (2020). Synthesis and application of a composite NaA zeolite / gamma-alumina membrane for oil-water separation process ( Síntese e aplicação de uma membrana compósita zeólita NaA / gama-alumina para o processo de separação de óleo / água ). Cerâmica, 66, 137–144.

Bergaya, F., Theng, B. K. G., & Lagaly, G. (2006). Handbook of Clay Science.

Brigatti, M. F., Galan, E., & Theng, B. K. G. (2006). Chapter 2 Structures and Mineralogy of Clay Minerals. In Developments in Clay Science (Vol. 1, Issue C, pp. 19–86). https://doi.org/10.1016/S1572-4352(05)01002-0

Chakrabarty, B., Ghoshal, A. K., & Purkait, M. K. (2008). Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. Journal of Membrane Science, 325(1), 427–437. https://doi.org/10.1016/j.memsci.2008.08.007

Chandradass, J., Kim, K. H., Bae, D. sik, Prasad, K., Balachandar, G., Divya, S. A., & Balasubramanian, M. (2009). Starch consolidation of alumina: Fabrication and mechanical properties. Journal of the European Ceramic Society, 29(11), 2219–2224. https://doi.org/10.1016/j.jeurceramsoc.2009.02.001

Cunha, R. S. S., Mota, J. D., Silva, F. M. N., & Rodrigues, M. G. F. (2019). Synthesis, characterization and evaluation of organophilic bofe clay for use in the removal of oil effluents. Materials Science Forum, 958 MSF, 17–22. https://doi.org/10.4028/www.scientific.net/MSF.958.17

Cunha, R. S. S., Mota, J. D., Mota, M. F., Rodrigues, M. G. F., & Machado, F. (2018). Preparation and characterization of tubular composite membranes and their application in water flow measurements. Materials Science Forum, 912 MSF, 263–268. https://doi.org/10.4028/www.scientific.net/MSF.912.263

De Angelis, L., & De Cortalezzi, M. M. F. (2013). Ceramic membrane filtration of organic compounds: Effect of concentration, pH, and mixtures interactions on fouling. Separation and Purification Technology, 118, 762–775. https://doi.org/10.1016/j.seppur.2013.08.016

Diraki, A., Mackey, H. R., Mckay, G., & Abdala, A. (2019). Removal of emulsified and dissolved diesel oil from high salinity wastewater by adsorption onto graphene oxide. Journal of Environmental Chemical Engineering, 7, 103106. https://doi.org/10.1016/j.jece.2019.103106

Do Carmo, E. S., Silva, L. R. B., Barbosa, T. L. A., & Rodrigues, M. G. F. (2020). Produção de membranas cerâmicas de baixo custo: influência da temperatura de sinterização. In Tecnologia, investigação, sustentabilidade e os desafios do século XXI (pp. 812–826).

Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater, 20th ed. American Public Health Association, Baltimore

Ebrahimi, M., Kerker, S., Schmitz, O., Schmidt, A. A., & Czermak, P. (2017). Evaluation of the Fouling Potential of Ceramic Membrane Configurations Designed for the Treatment of Oilfield Produced Water. Separation Science and Technology. https:// dx.doi.org/10.1080/01496395.2017.1386217

Elanchezhiyan, S. S., Prabhu, S. M., & Meenakshi, S. (2018). Effective adsorption of oil droplets from oil-in-water emulsion using metal ions encapsulated biopolymers: Role of metal ions and their mechanism in oil removal. International Journal of Biological Macromolecules, 112, 294-305. https://doi.org/10.1016/j.ijbiomac.2018.01.118

Eren, E. (2008). Removal of copper ions by modified Unye clay, Turkey. Journal of Hazardous Materials, 159(2–3), 235–244. https://doi.org/10.1016/j.jhazmat.2008.02.035

Foletto, E. L., Kuhnen, N. C., & José, H. J. (2000). Síntese da zeólita ZSM-5 e suas propriedades estruturais após troca iônica com cobre. Cerâmica, 46(300), 210–213. https://doi.org/10.1590/s0366-69132000000400007

Gonzaga, A. C., Sousa, B. V., Santana, L. N. L., Neves, G. A., & Rodrigues, M. G. F. (2007). Study of the different methods in the preparation of Organoclays from the Bentonite with application in the petroleum Industry. Brazilian Journal of Petroleum and Gas, 1(1), 16–25.

Grim, R. E. (1968). Clay mineralogy.

Hair, M. (1967). Infrared Spectroscopy in Surface Chemistry.

Hajjaji, M., Kacim, S., Alami, A., El Bouadili, A., & El Mountassir, M. (2001). Chemical and mineralogical characterization of a clay taken from the Moroccan Meseta and a study of the interaction between its fine fraction and methylene blue. Applied Clay Science, 20(1–2), 1–12. https://doi.org/10.1016/S0169-1317(00)00041-7

Henderson, S. B., Grigson, S. J. W., Johnson, P., & Roddie, B. D. (1999). Potential impact of production chemicals on the toxicity of produced water discharges from North Sea oil platforms. Marine Pollution Bulletin, 38(12), 1141–1151. https://doi.org/10.1016/S0025-326X(99)00144-7

Hsieh, H. (1996). Inorganic Membranes for Separation and Reaction.

Kilpatrick, P. K. (2012). Water-in-crude oil emulsion stabilization: Review and unanswered questions. Energy and Fuels, 26(7), 4017–4026. https://doi.org/10.1021/ef3003262

Kosinov, N., Gascon, J., Kapteijn, F., & Hensen, E. J. M. (2016). Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499, 65–79. https://doi.org/10.1016/j.memsci.2015.10.049

Kozak, M., & Domka, L. (2004). Adsorption of the quaternary ammonium salts on montmorillonite. Journal of Physics and Chemistry of Solids, 65(2–3), 441–445. https://doi.org/10.1016/j.jpcs.2003.09.015

Li, F., Yang, Y., Fan, Y., Xing, W., & Wang, Y. (2012). Modification of ceramic membranes for pore structure tailoring: The atomic layer deposition route. Journal of Membrane Science, 397–398, 17–23. https://doi.org/10.1016/j.memsci.2012.01.005

Li, W., Xing, W., & Xu, N. (2006). Modeling of relationship between water permeability and microstructure parameters of ceramic membranes. Desalination, 192(1–3), 340–345. https://doi.org/10.1016/j.desal.2005.07.042

Lima, R. Desenvolvimento de membranas cerâmicas tubulares com granito para a separação de índigo em efluente da indústria têxtil. (2014). Tese (Doutorado em Ciências e Engenharia de Materiais) – Universidade Federal de Campina Grande, Campina Grande.

Lorente-Ayza, M. M., Sánchez, E., Sanz, V., & Mestre, S. (2015). Influence of starch content on the properties of low-cost microfiltration ceramic membranes. Ceramics International, 41(10), 13064–13073. https://doi.org/10.1016/j.ceramint.2015.07.092

Manni, A., Achiou, B., Karim, A., Harrati, A., Sadik, C., Ouammou, M., Alami Younssi, S., & El Bouari, A. (2020). New low-cost ceramic microfiltration membrane made from natural magnesite for industrial wastewater treatment. Journal of Environmental Chemical Engineering, 8(4), 103906. https://doi.org/10.1016/j.jece.2020.103906

Martínez-Palou, R., Reyes, J., Cerón-Camacho, R., Ramírez-de-Santiago, M., Villanueva, D., Vallejo, A. A., & Aburto, J. (2015). Study of the formation and breaking of extra-heavy-crude-oil-in-water emulsions-A proposed strategy for transporting extra heavy crude oils. Chemical Engineering and Processing: Process Intensification, 98, 112–122. https://doi.org/10.1016/j.cep.2015.09.014

Mestre, S., Gozalbo, A., Lorente-Ayza, M. M., & Sánchez, E. (2019). Low-cost ceramic membranes: A research opportunity for industrial application. Journal of the European Ceramic Society, 39(12), 3392–3407. https://doi.org/10.1016/j.jeurceramsoc.2019.03.054

Mota, M. F., Rodrigues, M. G. F., & Machado, F. (2014). Oil-water separation process with organoclays: A comparative analysis. Applied Clay Science, 99, 237–245. https://doi.org/10.1016/j.clay.2014.06.039

Mota, M. F., Machado, F., & Rodrigues, M. G. F. (2012). Influence of exchanged surfactant on the structure and adsorption properties of brazilian green mud clay. Materials Science Forum, 727–728, 1473–1478. https://doi.org/10.4028/www.scientific.net/MSF.727-728.1473

Oliveira, R. C. G. (1995). 120 p. Estudos de variáveis operacionais e interfaciais na flotação de óleo por gás dissolvido. Dissertação (Mestrado em Engenharia) – Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1995.

Padaki, M., Surya Murali, R., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassim, M. A., Hilal, N., & Ismail, A. F. (2015). Membrane technology enhancement in oil-water separation. A review. Desalination, 357, 197–207. https://doi.org/10.1016/j.desal.2014.11.023

Pereira, K. R. O., Hanna, R. A., Ramos Vianna, M. M. G., Pinto, C. A., Rodrigues, M. G. F., & Valenzuela-Diaz, F. R. (2005). Brazilian organoclays as nanostructured sorbents of petroleum-derived hydrocarbons. Materials Research, 8(1), 77–80. https://doi.org/10.1590/s1516-14392005000100014

Pintor, A. M. A., Vilar, V. J. P., Botelho, C. M., S., & Boaventura, R. A. R. (2016). Oil and grease removal from wastewaters: Sorption treatment as an alternative to state-of-the-art technologies. A critical review. Chemical Engineering Journal, 297, 229–255. https://doi.org/ 10.1016/j.cej.2016.03.121.

Rodrigues, M. G. F. (2003). Physical and catalytic characterization of smectites from Boa-Vista, Paraíba, Brazil. Cerâmica, 49(311), 146–150. https://doi.org/10.1590/s0366-69132003000300007

Rodrigues, S. C. G., Queiroz, M. B., Pereira, K. R. O., Rodrigues, M. G. F., & Valenzuela-Diaz, F. R. (2010). Comparative study of organophilic clays to be used in the gas & petrol industry. Materials Science Forum, 660–661, 1037–1042. https://doi.org/10.4028/www.scientific.net/MSF.660-661.1037

Rubio, J., Souza, M. L., & Smith, R. W. (2002). Overview of flotation as a wastewater treatment technique. Minerals Engineering, 15, 139–155.

Russel, J., & Fraser, A. (1994). Infrared methods. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, 11–67.

Ruthven, D. (1984). Principles of adsorption & adsorption processes.

Sajna, K. V., Sukumaran, R. K., Gottumukkala, L. D., & Pandey, A. (2015). Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresource Technology, 191, 133–139. https://doi.org/10.1016/j.biortech.2015.04.126

Scheibler, J. R., Santos, E. R. F., Barbosa, A. S., & Rodrigues, M. G. F. (2015). Performance of zeolite membrane (ZSM-5/γ-Alumina) in the oil/water separation process. Desalination and Water Treatment, 56(13), 3561–3567. https://doi.org/10.1080/19443994.2014.986536

Silva, F. M. do N., Lima, E. G., de Almeida Barbosa, T. L., & Rodrigues, M. G. F. (2019). Characterization and application of catalysts hard green clay and moo3/hard green clay in transesterification reaction of soybean oil. Materials Science Forum, 958 MSF, 29–34. https://doi.org/10.4028/www.scientific.net/MSF.958.29

Silva, L. R. B., Barbosa, T. L. A., & Rodrigues, M. G. F. (2021). Membrana zeolítica NaA : Preparação e aplicação para tratamento de emulsão óleo/água. In Anais do IV CONEPETRO E VI WEPETRO.

Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). Spectrometric Identification of Organic Compounds.

Souza-Santos, P. (1989). Ciência e Tecnologia de Argilas.

Suleimanov, R. R., Gabbasova, I. M., & Sitdikov, R. N. (2005). Changes in the properties of oily gray forest soil during biological reclamation. Izvestiia Akademii Nauk. Seriia Biologicheskaia / Rossiiskaia Akademiia Nauk, 32(1), 109–115.

Vasanth, D., Uppaluri, R., & Pugazhenthi, G. (2011). Influence of sintering temperature on the properties of porous ceramic support prepared by uniaxial dry compaction method using low-cost raw materials for membrane applications. Separation Science and Technology, 46(8), 1241–1249. https://doi.org/10.1080/01496395.2011.556097

Vilar, W. C. T., Brito, A. L. F., Laborde, H. M., Laborde, M., Rodrigues, M. G. F., & Ferreira, H. S. (2009). Ativação térmica e caracterização da argila chocolate visando sua aplicação como adsorvente na remoção de níquel. Revista Eletrônica de Materiais e Processos, 3(Rev. Eletrônica Mater. e Process.), 39–47. http://dema.ufcg.edu.br/revista/index.php/REMAP/article/viewArticle/117

Wang, C. C., Juang, L. C., Lee, C. K., Hsu, T. C., Lee, J. F., & Chao, H. P. (2004). Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. Journal of Colloid and Interface Science, 280(1), 27–35. https://doi.org/10.1016/j.jcis.2004.07.009

Wang, C., Jiang, X., Zhou, L., Xia, G., Chen, Z., Duan, M., & Jiang, X. (2013). The preparation of organo-bentonite by a new gemini and its monomer surfactants and the application in MO removal: A comparative study. Chemical Engineering Journal, 219, 469–477. https://doi.org/10.1016/j.cej.2013.01.028

Xi, Y., Mallavarapu, M., & Naidu, R. (2010). Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Applied Clay Science, 48(1–2), 92–96. https://doi.org/10.1016/j.clay.2009.11.047

Yang, G. C. C., & Tsai, C. M. (2008). Effects of starch addition on characteristics of tubular porous ceramic membrane substrates. Desalination, 233(1–3), 129–136. https://doi.org/10.1016/j.desal.2007.09.035

Yang, Y., Raza, A., Banat, F., & Wang, K. (2018). The separation of oil in water (O/W) emulsions using polyether sulfone & nitrocellulose microfiltration membranes. Journal of Water Process Engineering, 25, 113-117. https://doi.org/10.1016/j.jwpe.2018.07.007

Zuo, J. H., Gu, Y. H., Wei, C., Yan, X., Chen, Y., & Lang, W. Z. (2020). Janus polyvinylidene fluoride membranes fabricated with thermally induced phase separation and spray-coating technique for the separations of both W/O and O/W emulsions. Journal of Membrane Science, 595, 117475. https://doi.org/10.1016/j.memsci.2019.117475

Published

11/10/2021

How to Cite

SILVA, L. R. B. .; SILVA, F. A. de S. .; BARBOSA, T. L. A.; RODRIGUES, M. G. F. . Low cost ceramic membrane for treatment of oily effluents. Research, Society and Development, [S. l.], v. 10, n. 13, p. e253101321071, 2021. DOI: 10.33448/rsd-v10i13.21071. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21071. Acesso em: 5 jan. 2025.

Issue

Section

Engineerings