Comparative analysis of cantilever bridge slab thickness based on the finite element method

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.21141

Keywords:

Deck slab overhangs; Load; Transverse moments; Thickness; Bridge.

Abstract

The construction process of reinforced concrete highway bridges requires study and analysis of the action of permanent and variable loads, in addition to other factors such as the dynamic actions arising from the movement and traffic of vehicles on the deck. The spread of capitalism, associated with the phenomenon of globalization causes the exponential growth of vehicle flow, consequently greater structural demands, these factors have great relevance in planning and development in the design of superstructure construction, because they are inherent to the emergence of transverse moments aroused in the longitudinal direction of the cantilever bridge slabs. The search for the correct analysis and consideration of these aspects for the structural evaluation of a bridge motivated the development of this study, for a better understanding of the efforts aroused in the structural element, as well as the efficient solution for it. The analysis of the variation in the thickness of cantilever bridge slabs is a preponderant factor in the foundation of this research. The study approached the semi-analytical mathematical model developed by Bakht and Jaeger (1985) and compared with the results obtained by Robalo (2013) by means of software based on the finite element method, a comparison and analysis of bending moments aroused in the cantilever slab was performed, correlating the factors related to the emergence of these efforts. The research used the Microsoft Excel program and the results obtained by Robalo (2013) with the SAP2000 software. It is concluded in this work the proportionality of the variation of slab thickness with the intensity of peak moments and the appearance of cracks in the structural part.

References

Associação Brasileira de Normas Técnicas. ABNT NBR 7188 (2013). Carga móvel rodoviária e de pedestres em pontes, viadutos, passarelas e outras estruturas.

Associação Brasileira de Normas Técnicas, ABNT NBR 7187 (2003) . Projeto de pontes de concreto armado e de concreto protendido.

Bakht, B. & Mufti, A. (2015). Bridges analysis, design, structural health monitoring, and rehabilitation. Springer.

Bakht, B. & Jaeger, L. G.(1985). Bridge analysis simplified, New York. McGraw-Hill Book Company.

Bakht B. & Holland, D.A. (1976) A manual method for the elastic analysis of wide cantilever slabs of linearly varying thickness. Can J Civ Eng 3(4):523–530

Bakht. B., Aziz, T.S. & Bantusevicius, K.F. (1979). Manual analysis of cantilever slabs of semi-infinite width. Can J Civ Eng 6(2):227–231

Correia, L. B.& Mendes, L. C. (2021). Analysis of thickness in deck slab overhangs. Research, Society and Development, [S. l.], v. 10, n. 8, p. e50610817556, 2021. DOI: 10.33448/rsd-v10i8.17556.

Cunha, A. J. P.& Souza, V. C. M. (1994). Lajes em concreto armado e protendido. EDUFF.

Cusens, A. R..& Pama, R. P (1975). Bridge deck analysis. John Wiley & Sons.

El Debs, M. K., Malite, M., Takeya, T., Munair Neto, J.& Hanai, J.B. (2001). Análise das consequências do Tráfego de combinações de veículos de carga (cvcs) sobre as Pontes da rede viária sob jurisdição do DER-SP. Departamento de Estradas de Rodagem do Estado de São Paulo, Relatório Técnico, Minerva.

Leonhardt, F.(1982). Brucken-Bridges. The Architetural Press..

Meireles, A. P. C. Levantamento e Diagnóstico de uma ponte metálica antiga. 2010. 74p. Dissertação de Mestrado (Mestrado em Engenharia Civil) – Departamento de Engenharia Civil, Faculdade de Engenharia da Universdade do Porto, Porto – Portugal.

Mendes, L. C.(2017). Pontes. Editora da Universidade Federal Fluminense.

Marchetti, O. (2018). Pontes de concreto armado. Blucher.

Munoz, L. J. V.(2020). Bridge Overhangs Slabs with Edge Beams. 125p. Doctoral Thesis (Doctoral Thesis in Structural Engineering and Bridges) - KTH Royal Institute of Technology, KTH, Stockholm.

O’Connor, Daniel S. (1991) - La gestion de puentes en Estados Unidos – Simpósio Nacional sobre conservacion, rehabilitacion y gestion de puentes, Madrid.

O’Connor, C. (1976). Pontes-superestruturas. Livros Técnicos e Científicos.

Pfeil, W. (1979). Pontes em Concreto Armado . Livros Técnicos e Científicos Editora S/A.

Pfeil, W. (1983). Pontes: Curso Básico – Editora Campus Ltda.

Quiroga, A. F. S. (1983). Cálculo de Estructuras de Puentes de Hormigon. Editorial Rueda.

Reissen, K. & Hegger, J. (2015). Experimental investigations on the shear capacity of RC cantilever bridge deck slabs under concentrated loads – Influences of moment-shear ratio and an inclined compression zone. 16th European Bridge Conference, Edinburgh, Scotland

Rowe, R.E. (1972). Concrete bridge design. Science Publishers LTD.

Silva, S. C.(2016). Análise paramétrica de superestrutura de ponte em viga contínua. 315p. Trabalho de Conclusão de curso (Graduação em Engenharia Civil) – Escola Politécnica , UFRJ, Rio de Janeiro.

Tardivo, F.G.(2014). Estudo de Esquemas estruturais e modelagem de tabuleiros de pontes esconsas. 162p. Dissertação de mestrado ( Mestrado em Engenharia Civil) – Escola Politécnica da Universidade de São Paulo, USP, São Paulo.

Vitório, A.(2002). Pontes Rodoviárias. CREA-PE.

Published

14/11/2021

How to Cite

CORREIA, L. B.; MENDES, L. C. Comparative analysis of cantilever bridge slab thickness based on the finite element method. Research, Society and Development, [S. l.], v. 10, n. 15, p. e20101521141, 2021. DOI: 10.33448/rsd-v10i15.21141. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21141. Acesso em: 25 dec. 2024.

Issue

Section

Engineerings