Effects of bisphosphonates on different zones of the epiphyseal growth plate of rats
DOI:
https://doi.org/10.33448/rsd-v10i14.22159Keywords:
Alendronate; Zoledronic acid; Growth plate; Animal models; Epiphyses.Abstract
Bisphosphonates (BIS) are indicated for several clinical disorders (e.g., osteoporosis). However, BIS has been associated with osteonecrosis and alterations in osteoclastogenesis and skeletal development. This study aimed to evaluate the effects of BIS (zoledronic acid - ZA and alendronate sodium - AS) on zones of the growth plate of rat femur. Animals (Wistar rats, n = 19) were divided into groups: 1) AS Group: animals received alendronate sodium orally (3 mg/kg per day); 2) ZA Group: ZA was administered intraperitoneally (0.2 mg/kg per week); and 3) Control Group (CG): a vehicle was administered. Animals were euthanized 21 days after the treatment, and femurs were collected for histological analysis. The images of all zones (resting, proliferative, hypertrophic, and calcified) were processed by the Qcapture® software providing a 40 and 400-fold increase. ZA decreased epiphyseal growth plate cell zones (ZA Group vs. CG) in most cases. Likewise, AS diminished the proliferative zone (AS Group vs. CG). Furthermore, ZA increased the calcified zone (ZA Group vs. CG). Previous works demonstrated that BIS decrease the epiphyseal disc. This reduction is probably due to the shortening of the cellular zones that undergoes calcification/ossification. The present results suggest that BIS should be carefully indicated because these drugs might accelerate epiphyseal closure.
References
Ballock, R. T., & O’Keefe, R. J. (2003). Physiology and pathophysiology of the growth plate. In Birth Defects Research Part C - Embryo Today: Reviews (Vol. 69, Issue 2, pp. 123–143). Birth Defects Res C Embryo Today. https://doi.org/10.1002/bdrc.10014
Batch, J. A., Couper, J. J., Rodda, C., Cowell, C. T., & Zacharin, M. (2003). Use of bisphosphonate therapy for osteoporosis in childhood and adolescence. In Journal of Paediatrics and Child Health (Vol. 39, Issue 2, pp. 88–92). J Paediatr Child Health. https://doi.org/10.1046/j.1440-1754.2003.00083.x
Bianchi, M. L. (2005). How to manage osteoporosis in children. In Best Practice and Research: Clinical Rheumatology (Vol. 19, Issue 6, pp. 991–1005). Best Pract Res Clin Rheumatol. https://doi.org/10.1016/j.berh.2005.06.006
Biggin, A., & Munns, C. F. (2017). Long-Term Bisphosphonate Therapy in Osteogenesis Imperfecta. In Current Osteoporosis Reports (Vol. 15, Issue 5, pp. 412–418). Current Medicine Group LLC 1. https://doi.org/10.1007/s11914-017-0401-0
Brighton, C. T. (1984). The growth plate. In Orthopedic Clinics of North America (Vol. 15, Issue 4, pp. 571–595). Elsevier. https://doi.org/10.1016/s0030-5898(20)31257-8
De Barros Silva, P. G., Ferreira Junior, A. E. C., Teófilo, C. R., Barbosa, M. C., Lima Júnior, R. C. P., Sousa, F. B., Mota, M. R. L., De Albuquerque Ribeiro, R., & Alves, A. P. N. N. (2015). Effect of different doses of zoledronic acid in establishing of bisphosphonate-related osteonecrosis. Archives of Oral Biology, 60(9), 1237–1245. https://doi.org/10.1016/j.archoralbio.2015.05.015
De Oliveira, F. A. K., Pinto, F. F. E., Sardenberg, T., Pereira, G. J. C., Curcelli, E. C., & Penna, V. (2019). Diagnosis and management of paget’s disease of bone - series of 8 cases. Acta Ortopedica Brasileira, 27(1), 31–32. https://doi.org/10.1590/1413-785220192701161107
Dominguez, L. J., Bella, G. Di, Belvedere, M., & Barbagallo, M. (2011). Physiology of the aging bone and mechanisms of action of bisphosphonates. Biogerontology, 12(5), 397–408. https://doi.org/10.1007/s10522-011-9344-5
Erdogan, M., Bereket, C., Ozkan, N., Alici, O., Sener, I., Desteli, E. E., & Ilkaya, F. (2014). The effect of zoledronic acid on growth plates and high turnover bones. Bratislava Medical Journal, 115(3), 131–135. https://doi.org/10.4149/BLL_2014_028
Fernandes, C., Leite, R. S., & Lanças, F. M. (2005). Bisfosfonatos: Síntese, análises químicas e aplicações farmacológicas. In Quimica Nova (Vol. 28, Issue 2, pp. 274–280). Sociedade Brasileira de Quimica. https://doi.org/10.1590/S0100-40422005000200019
Fischer, A. H., Jacobson, K. A., Rose, J., & Zeller, R. (2008). Hematoxylin and eosin staining of tissueand cell sections. Cold Spring Harbor Protocols, 3(5). https://doi.org/10.1101/pdb.prot4986
Gerber, H. P., Vu, T. H., Ryan, A. M., Kowalski, J., Werb, Z., & Ferrara, N. (1999). VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Medicine, 5(6), 623–628. https://doi.org/10.1038/9467
Harrington, J. T., Ste-Marie, L. G., Brandi, M. L., Civitelli, R., Fardellone, P., Grauer, A., Barton, I., & Boonen, S. (2004). Risedronate Rapidly Reduces the Risk for Nonvertebral Fractures in Women with Postmenopausal Osteoporosis. Calcified Tissue International, 74(2), 129–135. https://doi.org/10.1007/s00223-003-0042-4
Huang, R. C., Khan, S. N., Sandhu, H. S., Metzl, J. A., Cammisa, F. P., Zheng, F., Sama, A. A., & Lane, J. M. (2005). Alendronate inhibits spine fusion in a rat model. Spine, 30(22), 2516–2522. https://doi.org/10.1097/01.brs.0000186470.28070.7b
Hunziker, E. B., Schenk, R. K., & Cruz-Orive, L. M. (1987). Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. Journal of Bone and Joint Surgery - Series A, 69(2), 162–173. https://doi.org/10.2106/00004623-198769020-00002
Hunziker, Ernst B. (1994). Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microscopy Research and Technique, 28(6), 505–519. https://doi.org/10.1002/jemt.1070280606
Junges, A. C. (2013). Avaliação das características microscópicas do fêmur de ratos. https://lume.ufrgs.br/handle/10183/152822
Khosla, S., Burr, D., Cauley, J., Dempster, D. W., Ebeling, P. R., Felsenberg, D., Gagel, R. F., Gilsanz, V., Guise, T., Koka, S., McCauley, L. K., McGowan, J., McKee, M. D., Mohla, S., Pendrys, D. G., Raisz, L. G., Ruggiero, S. L., Shafer, D. M., Shum, L., … Shane, E. (2007). Bisphosphonate-associated osteonecrosis of the jaw: Report of a Task Force of the American Society for Bone and Mineral Research. In Journal of Bone and Mineral Research (Vol. 22, Issue 10, pp. 1479–1491). J Bone Miner Res. https://doi.org/10.1359/jbmr.0707onj
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biology, 8(6), e1000412. https://doi.org/10.1371/journal.pbio.1000412
Lawson, M., Triffitt, J., Ebetino, F., Barnett, B., Phipps, R., & Locklin, R. (2005). Potential bone mineral binding differences among bisphosphonates can be demonstrated by the use of hydroxyapatite column chromatography. - ORA - Oxford University Research Archive. https://ora.ox.ac.uk/objects/uuid:37e8be6d-f3f0-49aa-8b1f-ccbc78ea2f07
Leclerc, J. T., Michou, L., Vaillancourt, F., Pelet, S., Simonyan, D., & Belzile, E. L. (2019). Prevalence and Characteristics of Atypical Periprosthetic Femoral Fractures. Journal of Bone and Mineral Research, 34(1), 83–92. https://doi.org/10.1002/jbmr.3584
Li, Z., Kong, K., & Qi, W. (2006). Osteoclast and its roles in calcium metabolism and bone development and remodeling. In Biochemical and Biophysical Research Communications (Vol. 343, Issue 2, pp. 345–350). https://doi.org/10.1016/j.bbrc.2006.02.147
Lin, J. H. (1996). Bisphosphonates: A review of their pharmacokinetic properties. In Bone (Vol. 18, Issue 2, pp. 75–85). Elsevier Inc. https://doi.org/10.1016/8756-3282(95)00445-9
Mackie, E. J., Ahmed, Y. A., Tatarczuch, L., Chen, K. S., & Mirams, M. (2008). Endochondral ossification: How cartilage is converted into bone in the developing skeleton. In International Journal of Biochemistry and Cell Biology (Vol. 40, Issue 1, pp. 46–62). https://doi.org/10.1016/j.biocel.2007.06.009
Mackie, E. J., Tatarczuch, L., & Mirams, M. (2011). The skeleton: A multi-functional complex organ. The growth plate chondrocyte and endochondral ossification. In Journal of Endocrinology (Vol. 211, Issue 2, pp. 109–121). J Endocrinol. https://doi.org/10.1530/JOE-11-0048
Oyhanart, S. R., Escudero, N. D., & Mandalunis, P. M. (2015). Effect of alendronate on the mandible and long bones: An experimental study in vivo. Pediatric Research, 78(6), 618–625. https://doi.org/10.1038/pr.2015.163
Özenci, A. M., Aslan, T., Şahin, Z., Özbey, Ö., acar, N., & Üstünel, I. (2013). Protective effect of zoledronic acid on corticosteroid-induced chondrocyte apoptosis in rat articular cartilage. Acta Orthopaedica et Traumatologica Turcica, 47(6), 430–435. https://doi.org/10.3944/AOTT.2013.3136
Patntirapong, S., & Poolgesorn, M. (2018). Alteration of macrophage viability, differentiation, and function by bisphosphonates. Oral Diseases, 24(7), 1294–1302. https://doi.org/10.1111/odi.12908
Pfeil, D. J. F., & DeCamp, C. E. (2009). The epiphyseal plate: physiology, anatomy, and trauma - PubMed. Compend Contin Educ Vet., 31(8), E1-11.
Porras, A. G., Holland, S. D., & Gertz, B. J. (1999). Pharmacokinetics of alendronate. In Clinical Pharmacokinetics (Vol. 36, Issue 5, pp. 315–328). Adis International Ltd. https://doi.org/10.2165/00003088-199936050-00002
Quinn, R. (2005). Comparing rat’s to human’s age: How old is my rat in people years? In Nutrition (Vol. 21, Issue 6, pp. 775–777). Nutrition. https://doi.org/10.1016/j.nut.2005.04.002
Rezende, E., Bradaschia-Correa, V., Siviero, F., Ambrosio, L. M. B., & Arana-Chavez, V. E. (2017). Effects of bisphosphonates on osteogenesis and osteoclastogenesis signaling during the endochondral ossification of growing rats. Cell and Tissue Research, 368(2), 287–300. https://doi.org/10.1007/s00441-017-2574-3
Russell, R. G. G., Watts, N. B., Ebetino, F. H., & Rogers, M. J. (2008). Mechanisms of action of bisphosphonates: Similarities and differences and their potential influence on clinical efficacy. In Osteoporosis International (Vol. 19, Issue 6, pp. 733–759). Osteoporos Int. https://doi.org/10.1007/s00198-007-0540-8
Saad, H. A., Terry, M. A., Shamie, N., Chen, E. S., Friend, D. F., Holiman, J. D., & Stoeger, C. (2008). An easy and inexpensive method for quantitative analysis of endothelial damage by using vital dye staining and adobe photoshop software. Cornea, 27(7), 818–824. https://doi.org/10.1097/ICO.0b013e3181705ca2
Silva, É. C. C., Terreri, M. T. R. A., Castro, T. C. M. de, Barbosa, C. P. L., Fernandes, A. R. C., & Hilário, M. O. E. (2010). Linhas escleróticas metafisárias em crianças e adolescentes em uso de alendronato. Revista Brasileira de Reumatologia, 50(3), 283–290. https://doi.org/10.1590/s0482-50042010000300008
Tan, J., Sano, H., & Poole, K. (2019). Antiresorptive-associated spontaneous fractures of both tibiae, followed by an atypical femur fracture during the sequential treatment with alendronate, denosumab then teriparatide. BMJ Case Reports, 12(7). https://doi.org/10.1136/bcr-2019-229366
Wilsman, N. J., Farnum, C. E., Leiferman, E. M., Fry, M., & Barreto, C. (1996). Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. Journal of Orthopaedic Research, 14(6), 927–936. https://doi.org/10.1002/jor.1100140613
Zhu, E. D., Louis, L., Brooks, D. J., Bouxsein, M. L., & Demay, M. B. (2014). Effect of bisphosphonates on the rapidly growing male murine skeleton. Endocrinology, 155(4), 1188–1196. https://doi.org/10.1210/en.2013-1993
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Deise Ponzoni; Elissa Kerli Fernandes; Mateus Muller da Silva; Izabel Cristina Custódio de Souza; John Kim Neubert; Alexandre Silva Quevedo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.