Energy use from the gasification of corn crop residues (Zea mays) after three years in Stock

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.22672

Keywords:

Biomass; Syngas; Renewable energy; Thermochemical process.

Abstract

Fuel consumption has been very high over the last few decades, as a result of a serious environmental problem: the greenhouse effect. Several studies are being conducted in order to find solutions. Another great adversity is the large amount of waste generated in agriculture, whose final disposal is largely neither sustainable nor profitable. Corn is among the most produced cereals on the planet, generating an even greater amount of waste. Every ton of corn grain collected is produced about 1.4 tons of waste. In Brazil alone there are more than 100 million tons per year. In this work, the residues of the corn production chain, these being leaf, straw and stem, were used after three years in stock to perform the characterization in natura. After the period gasification was carried out, this process of conversion of biomass into gas with combustible properties, syngas, using different parameters of temperature (700 °C, 800 °C, 900 °C) and residence time (three, four and five minutes). In the combustible gases produced, their individual characteristics were analyzed in addition to their energy effectiveness. The lower calorific value of the stem, leaf and straw are 16.39 MJ.kg-1, 16.01 MJ.kg-1 and 16.40 MJ.kg-1. The highest values of lower calorific value of gases obtained in the analysis of stem, leaf and straw were respectively 4.99 MJ. Nm-3, 6.62 MJ.Nm-3, 4.97 MJ.Nm-3.

References

ABIMILHO. (2018a). O cereal que enriquece a alimentação humana.

ABIMILHO. (2018b). O cereal que enriquece a alimentação humana. http://www.abimilho.com.br/estatisticas.

Ardila, Y. C. (2015). Gaseificação da Biomassa para a Produção de Gás de Síntese e Posterior Fermentação para Bioetanol: Modelagem e Simulação do Processo. In Faculdade de Engenharia Química. Unicamp.

Asadi, N., Karimi Alavijeh, M., & Zilouei, H. (2017). Development of a mathematical methodology to investigate biohydrogen production from regional and national agricultural crop residues: A case study of Iran. International Journal of Hydrogen Energy, 42(4), 1989–2007. https://doi.org/10.1016/j.ijhydene.2016.10.021.

Asimakopoulos, K., Gavala, H. N., & Skiadas, I. V. (2018). Reactor systems for syngas fermentation processes: A review. Chemical Engineering Journal, 348(May), 732–744. https://doi.org/10.1016/j.cej.2018.05.003.

Balat, M., Balat, M., Kirtay, E., & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energy Conversion and Management, 50(12), 3158–3168. https://doi.org/10.1016/j.enconman.2009.08.013.

Basu, P. (2006). Combustion and Gasification in Fluidized Beds (CRC Press (ed.); 1st Editio). https://doi.org/https://doi.org/10.1201/9781420005158.

Basu, P. (2010). Biomass gasification and pyrolysis: pratical design and theory (U. K. Elsevier (ed.)).

Basu, P. (2013). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory (A. Press (ed.); Third Edit).

Belgiorno, V., De Feo, G., Della Rocca, C., & Napoli, R. M. A. (2003). Energy from gasification of solid wastes. Waste Management, 23(1), 1–15. https://doi.org/10.1016/S0956-053X(02)00149-6.

Campoy, M., Gómez-Barea, A., Vidal, F. B., & Ollero, P. (2009). Air-steam gasification of biomass in a fluidised bed: Process optimisation by enriched air. Fuel Processing Technology, 90(5), 677–685. https://doi.org/10.1016/j.fuproc.2008.12.007

CENBIO. (2002). Estado da arte da gaseificação.

Cruz, J. C., Filho, I. A. P., Alvarenga, R. C., Neto, M. M. G., Viana, J. H. M., Oliveira, M. F. de, Matrangolo, W. J. R., & Filho, M. R. de A. (2010). Cultivo do Milho. Embrapa, 6 a edição.

Daioglou, V., Stehfest, E., Wicke, B., Faaij, A., & van Vuuren, D. P. (2016). Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy, 8(2), 456–470. https://doi.org/10.1111/gcbb.12285.

Faaj, A., Walter, A., BAUEN, A., Bezzon, G., Rocha, J. D., Moreira, J. R., Craig, K. R., Overend, R. P., & Bain, R. L. (2005). Novas Tecnologias para os vetores Modernos de energia de Biomassa. In Unicamp (Ed.), Uso da Biomassa para produção de energia na indústria Brasileira.

FIESP. (2021). Safra Mundial de Milho 2021/22 - 1o Levantamento do USDA Informativo.

Food and Agricultural Organization. (2018). FAOSTAT, FAO Statistical Databases.

García-Lara, S., & Serna-Saldivar, S. O. (2019). Corn History and Culture. Corn, 1–18. https://doi.org/10.1016/B978-0-12-811971-6.00001-2.

Geraldo, B. C. de A. (2013). Gaseificação da Casca e da Torta da Mamona para Produção de Gás Combustível. Dissertaçao de Mestrado. Universidade Ferderal de Pernambuco.

Golden, T., Reed, B., & Das, A. (1988). Handbook of Biomass Downdraft Gasifier Engine Systems. SERI . U.S. Department of Energy, March, 148.

Gouveia De Souza, A., Oliveira Santos, J. C., Conceição, M. M., Dantas Silva, M. C., & Prasad, S. (2004). A thermoanalytic and kinetic study of sunflower oil. Brazilian Journal of Chemical Engineering, 21(2), 265–273. https://doi.org/10.1590/s0104-66322004000200017.

Higman, C., & Van der Burgt, M. (2003). No Title. In E. Gulf Professional Publishing (Ed.), Gasification.

Jackson Dantas Coêlho. (2018). Produção de grãos: feijão, milho e soja. 1–13.

Kadam, K. L., & McMillan, J. D. (2003). Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresource Technology, 88(1), 17–25. https://doi.org/10.1016/S0960-8524(02)00269-9.

Karimi Alavijeh, M., & Karimi, K. (2019). Biobutanol production from corn stover in the US. Industrial Crops and Products, 129(June 2018), 641–653. https://doi.org/10.1016/j.indcrop.2018.12.054.

Karimi Alavijeh, M., & Yaghmaei, S. (2016). Biochemical production of bioenergy from agricultural crops and residue in Iran. Waste Management, 52, 375–394. https://doi.org/10.1016/j.wasman.2016.03.025.

Kirubakaran, V., Sivaramakrishnan, V., Nalini, R., Sekar, T., Premalatha, M., & Subramanian, P. (2009). A review on gasification of biomass. Renewable and Sustainable Energy Reviews, 13(1), 179–186. https://doi.org/10.1016/j.rser.2007.07.001.

Koopmans, A., & Koppejan, J. (1997). Agricutal and forest residue - generation utilization and availabity. In Regional Consultation on Modern Applications of Biomass Energy (pp. 1–23). https://doi.org/10.7208/chicago/9780226023328.003.0003.

Lacerda C. G. (2015). Produção de gases combustíveis utilizando o bambu em processo de gaseificação. Dissertação de mestrado. Universidade de Pernambuco.

Lora, E. E. ., Gómez, E. O., & Cortez, L. A. (2009). Biomassa para energia (Unicamp (ed.); 1st ed.).

McKendry, P. (2002). Energy production from biomass (part 3): Gasification technologies. Bioresource Technology, 83(1), 55–63. https://doi.org/10.1016/S0960-8524(01)00120-1.

Nhuchhen, D. R., & Abdul Salam, P. (2012). Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel, 99, 55–63. https://doi.org/10.1016/j.fuel.2012.04.015.

Okuga, A. (2007). Analysis and operability optimization of an updraft gasifier unit. Eindhoven University Of Technology.

Paiva, A., Pereira, S., Sá, A., Cruz, D., Varum, H., & Pinto, J. (2012). A contribution to the thermal insulation performance characterization of corn cob particleboards. Energy and Buildings, 45, 274–279. https://doi.org/10.1016/j.enbuild.2011.11.019.

Peres, S. (1997). Catalytic Indirecty Head Gasification of Bagasse. Tese de Doudorato, University of Florida.

Peres, S., Loureiro, E., Santos, H., Vanderley e Silva, F., & Gusmao, A. (2020). The Production of Gaseous Biofuels Using Biomass Waste from Construction Sites in Recife, Brazil. Processes, 8(4), 457. MDPI AG. Retrieved from http://dx.doi.org/10.3390/pr8040457.

Pierri, L. (2014). Energia da Biomassa Residual de Aveia Branca e Soja em Resposta ao Sistema de Preparo do Solo e Níveis de Adubação. Universidade Federal do Paraná.

Puig-Arnavat, M., Bruno, J. C., & Coronas, A. (2010). Review and analysis of biomass gasification models. Renewable and Sustainable Energy Reviews, 14(9), 2841–2851. https://doi.org/10.1016/j.rser.2010.07.030.

Qin, L., Li, X., Zhu, J. Q., Li, W. C., Xu, H., Guan, Q. M., Zhang, M. T., Li, B. Z., & Yuan, Y. J. (2017). Optimization of ethylenediamine pretreatment and enzymatic hydrolysis to produce fermentable sugars from corn stover. Industrial Crops and Products, 102, 51–57. https://doi.org/10.1016/j.indcrop.2017.03.026.

Santos, P. de F., Góis, T. A., & Silva, S. P. R. da. (2021). Caracterização e geração de combustíveis gasosos utilizando folha de coqueiro da produção do coco (Cocos nucifera). Research, Society and Development, 10(7), e34610716783. https://doi.org/10.33448/rsd-v10i7.16783.

Sempruch, C., Leszczyński, B., Wilczewska, M., Chrzanowski, G., Sytykiewicz, H., Goławska, S., Kozak, A., Chwedczuk, M., & Klewek, A. (2015). Changes in amino acid decarboxylation in maize (Zea mays; Poaceae) tissues in response to bird cherry-oat aphid (Rhopalosiphum padi; Aphididae) infestation. Biochemical Systematics and Ecology, 60, 158–164. https://doi.org/10.1016/j.bse.2015.04.017.

Virmond, E. (2007). Aproveitamento do lodo de tratamento primário de efluentes de um frigorífico como fonte de energia. Dissertação de mestrado,. Universidade de Santa Catarina - UFSC.

Yassin, L., Lettieri, P., Simons, S. J. R., & Germanà, A. (2009). Techno-economic performance of energy-from-waste fluidized bed combustion and gasification processes in the UK context. Chemical Engineering Journal, 146(3), 315–327. https://doi.org/10.1016/j.cej.2008.06.014.

Published

27/11/2021

How to Cite

VIEIRA JÚNIOR, C. M.; SANTOS, H. da S. .; SANTOS, S. T. O. dos .; SILVA, S. P. R. da . Energy use from the gasification of corn crop residues (Zea mays) after three years in Stock. Research, Society and Development, [S. l.], v. 10, n. 15, p. e331101522672, 2021. DOI: 10.33448/rsd-v10i15.22672. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22672. Acesso em: 8 jan. 2025.

Issue

Section

Engineerings