The effect of different polyphenols against neurotoxicity induced by quinolinic acid in U87-MG glial cells

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.24865

Keywords:

neurodegeneration; Neurodegeneration; quinolinic acid; Quinolinic acid; polyphenols; Polyphenols; oxidative stress; Oxidative stress.

Abstract

Neurodegenerative disorders (ND) are very debilitating aging-related diseases and mitochondrial dysfunction, oxidative and nitrosative stress (ONS) have been demonstrated to be associated with its clinical manifestations. Mitochondria stand out as crucial organelles in the interplay between neurodegeneration and neuroinflammation, and polyphenols are promising mitochondria-targeting medicine. Phenolic compounds can regulate mitochondria controlling their redox state, function and apoptosis system. In this work, it was investigated the neuroprotective potential of Araucaria angustifolia (AAE) and Camellia sinensis (GT) extracts and six isolated compounds (resveratrol, gallic acid, ellagic acid, catechin, epicatechin and proanthocyanidins) in U87-MG glial cells. Further, the compounds that exhibited the best results were tested in a neurodegeneration model using quinolinic acid (QA). Among phenolic compounds, AAE and GT stood out, and maintained the glial viability around 100%, even in lower doses. Cells exposed to QA presented decreased viability, exacerbated reactive oxygen species (ROS) generation, reduced the mitochondrial membrane potential, and increased inflammatory response. U87-MG glial cells pre-treated with AAE or GT for 1 hour and then exposed to QA for 24 hours were able to prevent all these alterations induced by QA. Despite the similar results found with both GT and AAE, the last one was capable to prevent all the parameters tested in this work. In conclusion, we suggest that AAE could be a potential agent to prevent ND related to mitochondrial dysfunction associated with ONS.

References

Bader, V., & Winklhofer, K. F. (2020). Mitochondria at the interface between neurodegeneration and neuroinflammation. Seminars in Cell and Developmental Biology, 99, 1–9.

Basílio, F. S., Santos, J. M. & Branco, C. S. (2021). O papel do estresse oxidativo na Doença de Crohn: Uma revisão narrativa. Research, Society and Development, 10(4), 1–15.

Bhat, A. H., Dar, K. B., Anees, S., Zargar, M. A., Masood, A., Sofi, M. A., & Ganie, S. A. (2015). Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine and Pharmacotherapy, 74, 101–110.

Biernacki, T., Sandi, D., Bencsik, K., & Vécsei, L. (2020). Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives. Cells, 9(6), 1–35.

Branco, C. S., Lima, É. D., Rodrigues, T. S., Scheffel, T. B., Scola, G., Laurino, C. C. F. C., Moura, S., & Salvador, M. (2015). Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells. Chemico-Biological Interactions, 231, 108–118.

Branco, C. S., Duong, A., Machado, A. K., Wu, A., Scola, G., Andreazza, A. C., & Salvador, M. (2019). Araucaria angustifolia (Bertol.) Kuntze has neuroprotective action through mitochondrial modulation in dopaminergic SH-SY5Y cells. Molecular Biology Reports, 46(6), 6013–6025.

Bulck, M. Van, Sierra-Magro, A., Alarcon-Gil, J., Perez-Castillo, A., & Morales-Garcia, J. A. (2019). Novel approaches for the treatment of Alzheimer's and Parkinson's disease. International Journal of Molecular Sciences, 20(3), 1–36.

Castro-Portuguez, R., & Sutphin, G. L. (2020). Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Experimental Gerontology, 132, 1–14.

Chen, D., Zhang, T., & Lee, T. H. (2020). Cellular mechanisms of melatonin: Insight from neurodegenerative diseases. Biomolecules, 10(8), 1–26.

Chu, C. T. (2019). Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases. Neurobiology of Disease, 122, 23–34.

Colle, R., Masson, P., Verstuyft, C., Fève, B., Werner, E., Boursier-Neyret, C., Walther, B., David, D. J., Boniface, B., Falissard, B., Chanson, P., Corruble, E., & Becquemont, L. (2020). Peripheral tryptophan, serotonin, kynurenine, and their metabolites in major depression: A case–control study. Psychiatry and Clinical Neurosciences, 74(2), 112–117.

Colon, M., & Nerín, C. (2016). Synergistic, antagonistic and additive interactions of green tea polyphenols. European Food Research and Technology, 242(2), 211–220.

Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers in Nutrition, 5, 1–9.

Dalton, S. (2015). Linking the Cell Cycle to Cell Fate Decisions. Trends in Cell Biology, 25(10), 592–600.

Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P. E., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants and Redox Signaling, 18(14), 1818–1892.

Denizot, F & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271-277.

Deuschl, G., Beghi, E., Fazekas, F., Varga, T., Christoforidi, K. A., Sipido, E., Bassetti, C. L., Vos, T., & Feigin, V. L. (2020). The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017. The Lancet Public Health, 5(10), 551–567.

Devi, S., Kumar, V., Singh, S. K., Dubey, A. K., & Kim, J. J. (2021). Flavonoids: Potential candidates for the treatment of neurodegenerative disorders. Biomedicines, 9(2), 1–20.

Di Ferdinando, M., Brunetti, C., Agati, G., & Tattini, M. (2014). Multiple functions of polyphenols in plants inhabiting unfavorable Mediterranean areas. Environmental and Experimental Botany, 103, 107–116.

Erkkinen, M. G., Kim, M. O., & Geschwind, M. D. (2018). Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 10(4), 1–44.

Feng, W., Wang, Y., Liu, Z. Q., Zhang, X., Han, R., Miao, Y. Z., & Qin, Z. H. (2017). Microglia activation contributes to quinolinic acid-induced neuronal excitotoxicity through TNF-α. Apoptosis, 22(5), 696–709.

Frozza, C. O. S., Santos, D. A., Rufatto, L. C., Minetto, L., Scariot, F. J., Echeverrigaray, S., Pich, C. T., Moura, S., Padilha, F. F., Borsuk, S., Savegnago, L., Collares, T., Seixas, F. K., Dellagostin, O., Roesch-Ely, M., & Henriques, J. A. P. (2017). Antitumor activity of Brazilian red propolis fractions against Hep-2 cancer cell line. Biomedicine and Pharmacotherapy, 91, 951–963.

Ghasemi, M., Mayasi, Y., Hannoun, A., Eslami, S. M., & Carandang, R. (2018). Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience, 376, 48–71.

Golpich, M., Amini, E., Mohamed, Z., Azman Ali, R., Mohamed Ibrahim, N., & Ahmadiani, A. (2017). Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neuroscience and Therapeutics, 23(1), 5–22.

Gorzynik-Debicka, M., Przychodzen, P., Cappello, F., Kuban-Jankowska, A., Gammazza, A. M., Knap, N., Wozniak, M., & Gorska-Ponikowska, M. (2018). Potential health benefits of olive oil and plant polyphenols. International Journal of Molecular Sciences, 19(3), 1–13.

Green, L. C., Ruiz de Luzuriaga, K., Wagner, D. A., Rand, W., Istfan, N., Young, V. R., & Tannenbaum, S. R. (1981). Nitrate biosynthesis in man. Proceedings of the National Academy of Sciences of the United States of America, 78(12), 7764-7768.

Hano, C., & Tungmunnithum, D. (2020). Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines, 7(5), 1–9.

Islam, M. T. (2017). Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurological Research, 39(1), 73–82.

Johnson, J., Mercado-Ayon, E., Mercado-Ayon, Y., Dong, Y. N., Halawani, S., Ngaba, L., & Lynch, D. R. (2021). Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Archives of Biochemistry and Biophysics, 702, 1–37.

Limana Da Silveira, T., Zamberlan, D. C., Arantes, L. P., Lopes Machado, M., Cruz Da Silva, T., De Freitas Câmara, D., Santamaría, A., Aschner, M., Alexandre, F., & Soares, A. (2018). Quinolinic Acid and glutamatergic neurodegeneration in Caenorhabditis elegans. Neurotoxicology, 67, 94–101.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

Maddison, D. C., & Giorgini, F. (2015). The kynurenine pathway and neurodegenerative disease. Seminars in Cell and Developmental Biology, 40, 134–141.

McGrattan, A. M., McGuinness, B., McKinley, M. C., Kee, F., Passmore, P., Woodside, J. V., & McEvoy, C. T. (2019). Diet and Inflammation in Cognitive Ageing and Alzheimer’s Disease. Current Nutrition Reports, 8(2), 53–65.

Musial, C., Kuban-Jankowska, A., & Gorska-Ponikowska, M. (2020). Beneficial Properties of Green Tea Catechins. International Journal of Molecular Sciences, 2(5), 1-11.

Naoi, M., Wu, Y., Shamoto-Nagai, M., & Maruyama, W. (2019). Molecular Sciences Review Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. International Journal of Molecular Sciences, 20(10), 1–31.

Norris, S. P., Likanje, M. F. N., & Andrews, J. A. (2020). Amyotrophic lateral sclerosis: update on clinical management. Current Opinion in Neurology, 33(5), 641–648.

Nunnari, J., & Suomalainen, A. (2012). Mitochondria: In sickness and in health. Cell, 148(6), 1145–1159.

Pei, R., Liu, X., & Bolling, B. (2020). Flavonoids and gut health. Current Opinion in Biotechnology, 61, 153–159.

Pierozan, P., Colín-González, A. L., Biasibetti, H., da Silva, J. C., Wyse, A., Wajner, M., & Santamaria, A. (2018). Toxic Synergism Between Quinolinic Acid and Glutaric Acid in Neuronal Cells Is Mediated by Oxidative Stress: Insights to a New Toxic Model. Molecular Neurobiology, 55(6), 5362–5376.

Potì, F., Santi, D., Spaggiari, G., Zimetti, F., & Zanotti, I. (2019). Polyphenol health effects on cardiovascular and neurodegenerative disorders: A review and meta-analysis. International Journal of Molecular Sciences, 20(2), 1–26.

Radi, E., Formichi, P., Battisti, C., & Federico, A. (2014). Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer’s Disease, 42, 125–152.

Rathnayake, D., Chang, T., & Udagama, P. (2019). Selected serum cytokines and nitric oxide as potential multi-marker biosignature panels for Parkinson disease of varying durations: A case-control study. BMC Neurology, 19(1), 1–10.

Rekatsina, M., Paladini, A., Piroli, A., Zis, P., Pergolizzi, J. V., & Varrassi, G. (2020). Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Advances in Therapy, 37, 113–139.

Renaud, J., & Martinoli, M. G. (2019). Considerations for the use of polyphenols as therapies in neurodegenerative diseases. International Journal of Molecular Sciences, 20(8), 1–25.

Russo, G. L., Spagnuolo, C., Russo, M., Tedesco, I., Moccia, S., & Cervellera, C. (2020). Mechanisms of aging and potential role of selected polyphenols in extending healthspan. Biochemical Pharmacology, 173, 1–43.

Salim, S. (2017). Oxidative stress and the central nervous system. Journal of Pharmacology and Experimental Therapeutics, 360(1), 201–205.

Sas, K., Szabó, E., & Vécsei, L. (2018). Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules, 23(1), 1–28.

Slanzi, A., Iannoto, G., Rossi, B., Zenaro, E., & Constantin, G. (2020). In vitro Models of Neurodegenerative Diseases. Frontiers in Cell and Developmental Biology, 8, 1–18.

Song, H., Sieurin, J., Wirdefeldt, K., Pedersen, N. L., Almqvist, C., Larsson, H., Valdimarsdóttir, U. A., & Fang, F. (2020). Association of Stress-Related Disorders with Subsequent Neurodegenerative Diseases. JAMA Neurology, 77(6), 700–709.

Stephenson, J., Nutma, E., Valk, P., & Amor, S. (2018). Inflammation in CNS neurodegenerative diseases. Immunology, 154(2), 204–219.

Subhramanyam, C. S., Wang, C., Hu, Q., & Dheen, S. T. (2019). Microglia-mediated neuroinflammation in neurodegenerative diseases. Seminars in Cell and Developmental Biology, 94, 112–120.

Sundaram, G., Brew, B. J., Jones, S. P., Adams, S., Lim, C. K., & Guillemin, G. J. (2014). Quinolinic acid toxicity on oligodendroglial cells: relevance for multiple sclerosis and therapeutic strategies. Journal of Neuroinflammation, 11(1), 1–11.

Tomas-Barberan, F. A. & Yang, X. (2018). Tea is a Significant Dietary Source of Ellagitannins and Ellagic Acid. Journal of Agricultural and Food Chemistry, 67(19), 5394-5404.

Török, N., Tanaka, M., & Vécsei, L. (2020). Searching for peripheral biomarkers in neurodegenerative diseases: The tryptophan-kynurenine metabolic pathway. International Journal of Molecular Sciences, 21(24), 1–24

Tse, J. K. Y. (2017). Gut Microbiota, Nitric Oxide, and Microglia as Prerequisites for Neurodegenerative Disorders. ACS Chemical Neuroscience, 8(7), 1438–1447.

Visentin, A. P. V., Colombo, R., Scotton, E., Fracasso, D. S., Da Rosa, A. R., Branco, C. S., & Salvador, M. (2020). Targeting Inflammatory-Mitochondrial Response in Major Depression: Current Evidence and Further Challenges. Oxidative Medicine and Cellular Longevity, 2020, 1–20.

Wu, Y., Chen, M., & Jiang, J. (2019). Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion, 49, 35–45.

Zádor, F., Joca, S., Nagy-Grócz, G., Dvorácskó, S., Szücs, E., Tömböly1, C., Benyhe, S., & Vécsei, L. (2021). Pro-Inflammatory Cytokines: Potential Links between the Endocannabinoid System and the Kynurenine Pathway in Depression. International Journal of Molecular Sciences, 22(11), 1–19.

Zindel, J., & Kubes, P. (2020). DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annual Review of Pathology: Mechanisms of Disease, 15, 493–518.

Published

06/01/2022

How to Cite

SANTOS, J. M. dos .; VISENTIN, A. P. V. .; SCARIOT, F. J. .; ECHEVERRIGARAY, S. .; SALVADOR, M. .; BRANCO, C. S. . The effect of different polyphenols against neurotoxicity induced by quinolinic acid in U87-MG glial cells. Research, Society and Development, [S. l.], v. 11, n. 1, p. e28811124865, 2022. DOI: 10.33448/rsd-v11i1.24865. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24865. Acesso em: 9 jan. 2025.

Issue

Section

Health Sciences