Do thiazolidine compounds act on intracellular amastigotes of Trypanosoma cruzi? A systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26531

Keywords:

Alternative treatment; Antichagasic drugs; Benznidazole; Intracellular amastigotes; Thiazolidine compounds.

Abstract

Benznidazole (Bdz) are the drug of choice to treat Chagas Disease. However, the drug causes several side effects, and Trypanosoma cruzi, the etiological agent of Chagas disease, can be less susceptible to the action of drugs in the chronic phase, due to its reduced metabolism and dormancy in tissues. Thus, using compounds that are lethal to amastigote forms, which are prevalent in the Chagas disease chronic phase, is essential for the success of therapy. We propose to evaluate, though a systematic review, the efficacy of thiazolidine and its imidazolidine derivatives against T. cruzi intracellular amastigotes, and to compare the results with those for Bdz, A systematic search was made on eight English Language Systematic Databases - Science Direct, Scopus, Pubmed, Google Scholar, LILACS, Scielo, Trip Database and Cochrane, to collect studies, without a time scale. IC50 values, cytotoxic effects (CC50), a selective index (SI), the mechanism of action of each compound and the length of treatment was included in this review to evaluate the effectiveness of each compound. The compound 2-Iminothiazolidin-4-one 18 was more effective than Bdz, as it affected intracellular amastigotes by making a structural modification in the parasite, and by inhibiting cruzain, being promising for the antichagasic therapy.

Author Biography

Daniela de Araújo Viana Marques, Universidade de Pernambuco

Laboratório de Biotecnologia Aplicada a Doenças Infecto-Parasitárias.

References

Arrúa, E. C., Seremeta, K. P., Bedogni, G. R., Okulik, N. B., & Salomon, C. J. (2019). Nanocarriers for effective delivery of benznidazole and nifurtimox in the treatment of chagas disease: A review. Acta Trop; (198): 1-10. 10.1016/j.actatropica.2019.105080.

Assis, M. G., Diniz, G. A., Montoya, R. A., Dias, J. C., Coura, J. R., Machado-Coelho, G. L., Albajar-Viñas, P., Torres, R. M., & De Lana, M. (2013). A serological, parasitological and clinical evaluation of untreated Chagas disease patients and those treated with benznidazole before and thirteen years after intervention. Mem Inst Oswaldo Cruz; (108): 873–880. 10.1590/0074-0276130122.

Benjamin, D. R., Van de Water, A. T., & Peiris, C. L. (2014). Effects of exercise on diastasis of the rectus abdominis muscle in the antenatal and postnatal periods: A systematic review. Physiotherapy (United Kingdom); (100): 1–8. 10.1016/j.physio.2013.08.005.

Bern, C. (2011). Antitrypanosomal therapy for chronic Chagas’ disease. N Engl J Med; (364): 2527–2534. 10.1056/NEJMct1014204.

Campos, M. C., Leon, L. L., Taylor, M. C., & Kelly, J. M. (2014). Benznidazole-resistance in Trypanosoma cruzi: Evidence that distinct mechanisms can act in concert. Mol Biochem Parasitol; (193): 17–19. 10.1016/j.molbiopara.2014.01.002.

Cardoso, M. V., Siqueira, L. R. P., Silva, E. B., & et al. (2014). 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: Structural design, synthesis and pharmacological evaluation. Eur J Med Chem; (86): 48–59. 10.1016/j.ejmech.2014.08.012.

Castro, J. A., de Mecca, M. M., & Bartel, L. C. (2006). Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum Exp Toxicol; (25): 471–479. 10.1191/0960327106het653oa.

Cazzulo, J. J., Stoka, V., & Turk, V. (2001). The major cysteine proteinase of Trypanosoma cruzi: a valid target for chemotherapy of Chagas disease. Curr Pharm Des; (7): 1143-56. 10.2174/1381612013397528.

Coura, J. R. & Borges, P. J. (2011). Chronic phase of Chagas disease: Why should it be treated? A comprehensive review. Mem Inst Oswaldo Cruz; (106): 641–645. 10.1590/S0074-02762011000600001.

Coura, J. R., & de Castro, S. L. 2002. A critical review on chagas disease chemotherapy. Mem Inst Oswaldo Cruz; (97): 3–24. 10.1590/S0074-02762002000100001.

de Oliveira Filho, G. B., Cardoso, M. V. O., Espíndola, J. W. P. & et al. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eu J Med Chem 141: 346–361. org/10.1016/j.ejmech.2017.09.047.

Downs, S. H. & Black, N. (1998). The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health; (52): 377–384. 10.1136/jech.52.6.377.

Du, X., Guo, C., Hansell, E., & et al. (2002). Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J Med Chem; (13): 2695-707. 10.1021/jm010459j.

Duschak, V. G., Ciaccio, M., Nasser, J. R., & Basombrío, M. A. (2001). Enzymatic activity, protein expression, and gene sequence of cruzipain in virulent and attenuated Trypanosoma cruzi strains. J Parasitol; (87): 1016–1022. 10.1645/0022-3395(2001)087[1016:EAPEAG]2.0.CO;2.

Echeverria, L. E., & Morillo, C. A. (2019). American Trypanosomiasis (Chagas Disease). Infect Dis Clin North Am; (33): 119–134. org/10.1016/j.idc.2018.10.015.

Engel, J. C., Doyle, P. S., Palmer, J., Hsleh, I., Bainton, D. F., & Mckerrow, J. H. (1998). Cysteine protease inhibitors alter Golgi complex ultrastructure and function in Trypanosoma cruzi. J Cell Sci; (111): 597–606.

Engel, J. C., García, C. T., Hsieh, I., Doyle, P. S., & McKerrow, J. H. (2000). Upregulation of the secretory pathway in cysteine protease inhibitor-resistant Trypanosoma cruzi. J Cell Sci; (113): 1345–1354.

Engels, E. A., Schmid, C. H., Terrin, N., Olkin, I., & Lau, J. (2000). Heterogeneity and statistical significance in meta-analysis: an empirical study of 125 meta-analyses. Stat Med; (19): 1707–1728. 10.1002/1097-0258(20000715)19:13<1707AID-SIM491>3.0.CO;2-P.

Engers, P. B., Rombaldi, A. J., Portella, E. G., & Silva, M. C. (2016). Efeitos da prática do método Pilates em idosos: uma revisão sistemática. Rev Bras Reumatol; (56): 352–365. 10.1016/j.rbr.2015.11.003.

Hall, B. S., & Wilkinson, S. R. 2012. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother; (56): 115–123. 10.1128/AAC.05135-11.

Liu, Q., & Zhou, X. N. (2015). Preventing the transmission of American trypanosomiasis and its spread into non-endemic countries. Infect Dis Poverty; (4): 1–11. 10.1186/s40249-015-0092-7.

Macaskill, P., Walter, S., & Irwig, L. (2001). A Comparison of Methods to Detect Publication Bias in Meta-Analysis. Stat Med 20: 641–654. 10.1002/sim.698.

McKerrow, J. H., Doyle, P. S., Engel, J. C., & et al. (2009). Two approaches to discovering and developing new drugs for Chagas disease. Mem Inst Oswaldo Cruz; (104): 263–269. 10.1590/S0074-02762009000900034.

Meneghelli, U. G., de Godoy, R. A., Macedo, J. F., de Oliveira, R. B., Troncon, L. E., & Dantas, R. O. (1982). Basal motility of dilated and non-dilated sigmoid colon and rectum in Chagas’ disease. Arq gastroenterol; (19): 127–132.

Moura, Y. A. S., Silva-Júnior, J. N., Lorena, V. M. B., Amorim, A. P., Porto, A. L. F., Viana-Marques, D. A., Bezerra, R. P. (2021). Effects of algae bioactive compounds on Trypanosoma cruzi: A systematic review. Algal Res; (60): 1-13.

Moher, D.; Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med; (6): 1-6. 10.1371/journal.pmed.1000097.

Moreira, D. R. M., Costa, S. P. M., Hernandes, M. Z., & et al. (2012). Structural investigation of anti-Trypanosoma cruzi 2-iminothiazolidin-4- ones allows the identification of agents with efficacy in infected mice. J Med Chem; (55): 10918–10936. 10.1021/jm301518v.

Moreira, T. L. B., Barbosa, A. F. S., Veiga-Santos, P., Henriques, C., Henriques-Pons, A., Galdino, S. L., de Lima, M. D., Pitta, I. D., de Souza, W., de Carvalho, T. M. (2013). Effect of thiazolidine LPSF SF29 on the growth and morphology of Trypanosoma cruzi. Int J of Antimicrob Agents; (41): 183–187. 10.1016/j.ijantimicag.2012.09.018.

Rassi, A., Rassi, A., & de Rezendo, M. J. (2012). American Trypanosomiasis (Chagas Disease). Infect Dis Clin North Am; (26): 275–291. 10.1016/j.idc.2012.03.002.

Requena-Méndez, A., Aldasoro, E., de Lazzari, E., Sicuri, E., Brown, M., Moore, D. A., Gascon, J., & Muñoz J. (2015). Prevalence of Chagas Disease in Latin-American Migrants Living in Europe: A Systematic Review and Meta-analysis. PLoS Negl Trop Dis; (9): 1–15. 10.1371/journal.pntd.0003540.

Samoocha, D., Bruinvels, D. J., Elbers, A., Anema, J. R., & Beek, A. (2010). Effectiveness of Web-based Interventions on Patient Empowerment : A Systematic Review and Meta-analysis. J Med Internet Res; (12): 1-17. 10.2196/jmir.1286.

Silva, C. F., Meuser, M. B., de Souza, E. M., Meirelles, M. N., Stephens, C. E., Som, P., Boykin, D. W., & Soeiro, M. N. (2007). Cellular effects of reversed amidines on Trypanosoma cruzi. Antim Agents Chem; (51): 3803–3809. 10.1128/AAC.00047-07.

Silva-Júnior, E. F., Silva, E. P. S., França, P. H. B., & et al. Design, synthesis, molecular docking and biological evaluation of thiophen-2-iminothiazolidine derivatives for use against Trypanosoma cruzi. Bioorg Med Chem; (24): 4228–4240. 10.1016/j.bmc.2016.07.013.

Souto-Padron, T., Campetella, O. E., Cazzulo, J. J., & de Souza, W. (1990). Cysteine proteinase in Trypanosoma cruzi: Immunocytochemical localization and involvement in parasite-host cell interaction. J Cell Sci; (96): 485–490.

Teixeira, A. R., Nitz, N., Guimaro, M. C., Gomes, C., & Santos-Buch, C. A. (2006). Chagas disease. Postg Med J 82: 788–798. 10.1136/pgmj.2006.047357.

Urbina, J. A. (2010). Specific chemotherapy of Chagas disease: Relevance, current limitations and new approaches. Acta Trop; (115): 55–68. 10.1016/j.actatropica.2009.10.023.

Vieira, M., Rohloff, P., Luo, S., Cunha-&-Silva, N. L., de Souza, W., & Docampo, R. 2005. Role for a P-type H+-ATPase in the acidification of the endocytic pathway of Trypanosoma cruzi. Biochem J; (392): 467–474. 10.1042/BJ20051319.

Villalta, F. & Rachakonda, G. (2019). Advances in preclinical approaches to Chagas disease drug discovery. Expert Opin Drug Discov; (14): 1161–1174. 10.1080/17460441.2019.1652593.

Viotti, R., Vigliano, C., Lococo, B., Alvarez, M. G., Petti, M., Bertocchi, G., & Armenti, A. (2009). Side effects of benznidazole as treatment in chronic Chagas disease: fears and realities. Expert Rev Anti Infect Ther; (7): 157–163. 10.1586/14787210.7.2.157.

Wiggers, H. J., Rocha, J. R., Fernandes, W. B., & et al. (2013). Non-peptidic Cruzain Inhibitors with Trypanocidal Activity Discovered by Virtual Screening and In Vitro Assay. PLoS Negl Trop Dis; (7): 1-11. 10.1371/journal.pntd.0002370.

Wilkinson, S. R., Taylor, M. C., Horn, D., Kelly, J. M., & Cheeseman, I. (2008). A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci USA; (105): 5022–5027. 10.1073/pnas.0711014105.

World Health Organization (WHO). (2012). Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis. apps.who.int/iris/bitstream/10665/77472/1/ WHO_TRS_975_eng.pdf.

World Health Organization (WHO). (2020). Chagas disease (also known as American trypanosomiasis). https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis).

World Health Organization (WHO). (2018). Chagas disease (Epidemiology). https://www.who.int/chagas/epidemiology/en/.

Kouznetsov, V. (2019). Cruzain Inhibitors as Prominent Molecules with The Potential to become Drug Candidates against Chagas Disease. J Pharmacol Pharm Res; (2), 1–7. https://doi.org10.31038/jppr.2019233.

Yeung, C., Mendoza, I., Echeverria, L. E., & Baranchuk, A. (2020). Chagas’ cardiomyopathy and Lyme carditis: Lessons learned from two infectious diseases affecting the heart. Trends Cardiovasc Med. 10.1016/j.tcm.2020.04.004.

Zingales, B., Miles, M. A., Moraes, C. B., Luquetti, A., Guhl, F., Schijman, A. G., & Ribeiro, I. (2014). Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem Inst Oswaldo Cruz; (109), 828–833. https://doi.org.

Downloads

Published

28/02/2022

How to Cite

SILVA JÚNIOR, J. N. da; CALAÇA, P. R. de A. .; MOURA, Y. A. S. .; AMORIM, A. P. de; SILVA, A. C. da; BEZERRA, R. P. .; LORENA, V. M. B. .; MARQUES, D. de A. V. .; CAIRES, S. de F. F. .; PORTO, A. L. F. . Do thiazolidine compounds act on intracellular amastigotes of Trypanosoma cruzi? A systematic review. Research, Society and Development, [S. l.], v. 11, n. 3, p. e38611326531, 2022. DOI: 10.33448/rsd-v11i3.26531. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26531. Acesso em: 23 nov. 2024.

Issue

Section

Review Article