Bioconversion of coffee ground to lipase by filamentous fungi isolated from the Igarassu River in the State of Pernambuco, Brazil

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27515

Keywords:

Microrganisms; Solid state fermentation; Agro-industrial residues.

Abstract

Most lipases used for commercial purposes are isolated from microorganisms due to their stability and easy recovery, new residues have been studied to obtain enzymes to reduce production costs. Therefore, this work investigated the biotechnological potential of filamentous fungi isolated from the Igarassu River in the conversion of coffee grounds into lipase in solid state fermentation. The fungi were isolated, identified and submitted to a preliminary assay with 10g of coffee grounds, moisture 60% at 28 °C for 144 h to select the filamentous fungus with the highest potential for lipase production. A factorial design of 23 was carried out to evaluate the influence of the variables moisture, temperature and residue concentration on lipase production by the selected species. Five filamentous fungi were isolated and identified: A. flavus UCP 0316, A. fumigatus UCP 0327, P. variotii UCP 0334, M. hiemalis f. luteis UCP 0343 and A. foetidus UCP 0360. All filamentous fungi cultivated on coffee grounds were able to grow and produce lipase, however A. foetidus exhibited higher enzymatic activity of 514.29 U/mL. We observed that the production of lipase was higher (2941.87 U/mL) when A. foetidus was cultivated in 25 g of coffee grounds, 37 °C and 50% moisture. Therefore, we emphasize that coffee grounds are a promising agro-industrial residue to lipase production, contributing to the reduction of environmental pollution and generating value-added products for the industry.

References

Adnani, A., Basri, M., Malk, E. A., Salleh, A. B., Rahman, M. B. A., Chaibakhsh, N., Rahman, R. N. Z. R. A. (2010). Optimization of lipase-catalyzed synthesis of xylitol ester by Taguchi robust design method. Industrial Crops and Products, 31(2): 350-356. https://doi.org/10.1016/j.indcrop.2009.12.001

Alves, M. H., Trufem, S. F. B., Milanez, A. I. (2002). Táxons de Mucor Fresen. (Zygomycota) em fezes de herbívoros, Recife, PE, Brasil. Rev Bras Bot, 25(2):147-160. https://doi.org/10.1590/S0100-84042002000200004

Alves, A. M., Moura, R. B., Carvalho, A. K. F., Castro, H. F., Andrade, G. S. S. (2019). Penicillium citrinum whole-cells catalyst for the treatment of lipd-rich wastewater. Biomass and Bioenergy, 120:433-438. https://doi.org/10.1016/j.biombioe.2018.12.004

Barbosa, R. N., Bezerra, J. D. P., Santos, A. C., Melo, R. F. R., Houbraken, J., Oliveira, N. T., Souza-Motta, C. M. (2020). Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of Aspergillus, Penicillium and Talaromyces (Eurotiales) and the description of P. vascosobrinhous sp. Acta Botanica Brasilica, 34(2). https://doi.org/10.1590/0102-33062019abb0411

Castellani, A. (1939). Viability of some pathogenic fungi in distilled water. Journal of Tropical Medicine and Hygiene, 42:225-226

Colla, L. M., Hemkemeier, M., Gil, A. S. (2012). Biossorção de Cádmio e Produção de Biossurfactantes por fungos filamentosos em Fermentação Submersa. Revista CIATEC, 4(1):1-10. https://doi.org/10.5335/ciatec.v4i1.1934

Conab. Acompanhamento nacional da safra brasileira do café (2022), 9(1):1-60, Brasilia/DF. Disponível em: https://www.conab.gov.br/info-agro/safras/cafe

Costa, J. A. V., Treichel, H., Kumar V, Pandey, A. (2018). Advances in solid-state fermentation. In: Curr Dev Biotechnol Bioeng, 1ª ed. Elsevier, 1-17. https://doi.org/10.1016/B978-0-444-63990-5.00001-3

Chandra, P., Enespa, R. S., Arora, P. K. (2020) Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 19, 169. https://doi.org/10.1186/s12934-020-01428-8

Craig, A. P., Franca, A. S., & Oliveira, L. S. (2012). Discrimination between defective and non-defective roasted coffees by diffuse reflectance infrared Fourier transform spectroscopy. LWT, 47(2), 505-511. https://doi.org/10.1016/j.lwt.2012.02.016

Devlin, T. M. (2011). Manual de Bioquímica com Correlações Clínicas. Ed. Edgard Blúcher, São Paulo

Doi, S. A., Pinto, A. B., Canali, M. C., Polezel, D. R., Chinellato, R. A. M., Oliveira, A. J. F. C. (2018). Densidade e diversidade de fungos filamentosos na água e sedimento da baia do Araçá em São Sebastião, São Paulo, Brasil. Biota neotropical, 18(1). https://doi.org/10.1590/1676-0611-BN-2017-0416

Durán, C. A. A., Tsukui, A., Santos, F. K. F., Martinez, S. T., Bizzo, H. R., Rezende, C. M. (2017). Café: Aspectos Gerais e seu Aproveitamento para além da Bebida. Ver. Virtual Quim. 9(1):107-134

Ferraz, J. L. A. A., Souza, L. O., Silva, T. P., Franco, M. (2018). Obtenção de Lipases Microbianas: Uma Breve Revisão. Revista Ciências Exatas e Naturais, 20(1):30-54. Doi:10.5935/RECEN.2018.01.03

França, E. S., Marinho, J. S., Cândido, T. R. S., Lins, U. M. B., Andrade, R. F.S., Campos-Takaki, G. M., Silva, C. A. A., Okada, K. (2020). Detecção de esterase e lipase produzidas por fungos filamentosos isolados de solos da Caatinga. Brazilian Journal of Development, 6(11):91693-91709. Doi:10.34117/bjdv6n11-543

García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites part B: engineering, 78, 256-265. https://doi.org/10.1016/j.compositesb.2015.03.080

Garcia, C. V., Young-Teck, K. I. M. (2021). Spent Coffee Grounds and Coffee Silverskin as potencial materials for packaging: a review. Journal of Polymers and the Environment, 29:2372-2384. https://doi.org/10.1007/s10924-021-02067-9

Getachew, A. T., Chun, B. S. (2017). Influence of pretreatment and modifiers on subcritical water liquefaction of spent coffee grounds: a green waste valorization approach. Journal of Cleaner Production, 142:3719-3727. https://doi.org/10.1016/j.jclepro.2016.10.096

Gochev, V., Monteiro, G., Kostov, G., Toscano, L., Stoytcheva, M., Krastanov, A., Georgieva, A. (2012). Nutritive medium engineering enhanced production of extracellular lipase by trichoderma longibrachiatum. Biotechnology & Biotechnological Equipment, 26(2):2875-2882. https://doi.org/10.5504/BBEQ.2011.0138

Gomes, D. N. F., Cavalcanti, M. A. Q., Fernandes, M. J.S., Lima, D. M. M., Passavante, J. Z. O. (2008). Filamentous fungi isolated from sand and water of “Bairro Novo” and “Casa Caiada” beaches, Olinda, Pernambuco, Brasil. Braz. J. Biol, 68(3):377-382. https://doi.org/10.1590/S1519-69842008000300016

Gorlach-Lira, K., Coutinho, H. D. M. (2007). Dinâmica populacional e atividade de enzimas extracelulares de bactérias hemofílicas e termofilias isoladas do solo do semiárido nordestino. Brazilian Jornal of Microbiology, 38(1). https://doi.org/10.1590/S1517-83822007000100028

Gorlach-Lira, K., Gomes, K. D., Polizelli, M. A. (2020). Determinação dos parâmetros cinéticos da enzima beta-galactosidase. Brazilian Journal of Development, 6(5):28194-28208. Doi:10.34117/bjdv6n5-316

Guedes, E. H. S., Santos, A. L., Ibiapina, A., Aguiar, A. O., Soares, C. M. S., Vellano, P. O., Santos, L. S.S., Junior, A. F. C. (2021). Resíduos agroindustriais como substrato para a produção de lipases microbiana: uma revisão. Research Society and Development, 10(2):1-12. https://doi.org/10.33448/rsd-v10i2.12537

Iriondo-Dehond A, Garcia NA, Fernandez-Gomez, Guisantes-Batan, E, et al (2019) Validation of coffee by-products as novel food ingredients. Innovative Food Science & Emerging Technologies 51:194-204. https://doi.org/10.1016/j.ifset.2018.06.010

Kokalis-Burelle, N., Porter, D. M., Rodriguez-Kábana, R., Smith, D. H., Subrahmanyam, P. (1997). Compendium of peanut diseases. 2ª Ed. St. Paul: The American Phytopathological Society

Klich, M. A. (2002). Identification of Common Aspergillus species. Netherlands: Centraalbureau voor Schimmelautures

Lima, A. K. S., Rodrigues, J. R., Souza, I. S., Rodrigues, J. C., Souza, T. C., Maia, C. R., Fernandes, O. C. C. (2017). Fungos isolados da água de consumo de uma comunidade ribeirinha do médio Rio Solimões, Amazonas-Brasil: potencial patogênico. Rev. Ambient. Água, 12(6). https://doi.org/10.4136/ambi-agua.2018 .

Lima, A. C. M., Santos, C. M., Santos, I. L., Bastos, L. T. A., Santos, A. C., Paula-Elias, F. C., Almeida, A. F. (2021). Use of agro-insdustrial residues for lipase production by Candida viswanathii in a solid-state cultivation system. Scientia Plena, 17(8):081513-1. https://doi.org/10.14808/sci.plena.2021.081513

Liu, X., Kokare, C. (2017). Microbial Enzymes of Use in Industry. Biotechnology of Microbial Enzymes, 267-298. https://doi.org/10.1016/B978-0-12-803725-6.00011-X

Magnago, R. F., Garcia, G. D., Marques, D. V., Pedroso, I. D., Hermann, K. A. C., Pereira, N. R. L., Mazon, S. P., Costa, S. C. (2019). Combustíveis sólidos a partir de biomassa residual de borra de café, casca de arroz e casca de batata. Mix Sustentável, 5(2). https://doi.org/10.29183/2447-3073.MIX2019.v5.n2.43-53.

Markerts Research Report. Lipase, (2020). Disponível em: https://www.marketresearch.com/Global-Industry-Analysts-v1039/Lipase-14376630/

Marzo, C., Diaz, A. B., Caro, I., Blandino, A. (2019). Valorization of agro-industrial wastes to produce hydrolytic enzymes by fungal solid-state fermentation. Waste Management and Research, 37(2):149-156. https://doi.org/10.1177/0734242X18798699

Mehta, A., Guleria, S., Sharma, R., Gupta, R. (2021). The lipases and their applications with emphasis on food industry. ScienceDirect, 143-164. https://doi.org/10.1016/B978-0-12-819813-1.00006-2

Melani, N. B., Tambourgi, E. B., Silveira, E. (2020). Lipases: From Production to Applications. Separation & Purification Reviews, 49(2). https://doi.org/10.1080/15422119.2018.1564328

Monteiro, V. N., Silva, R. N. (2009). Aplicações Industriais da Biotecnologia Enzimática. Revista de Processos Químicos, 3(5):9-23

Msangosoko, K., Gandotra, S., Bhattacharya, R., Ramakrishnan, B., Sharma, K., Subramanian, S. (2022). Screening and characterization of lipase producing bacteria isolated from the gut of a lepidopteran larvae, Samia ricini. Journal of Asia-Pacific Entomology, 25(1):101856. https://doi.org/10.1016/j.aspen.2021.101856

Nagarajan S (2012). New tools for exploring “old friends-microbial lipases”. Appl Biochem Biotechnol, 168(5). Doi: 10.1007/s12010-012-9849-7

Nakasato K, Ono T, Ishiguro, T, Takamatsu, M, Tsukamoto, C, Mikami M (2007) Rapid quantitative analysis of the major components in soymilk using Fourier-transform infrared spectroscopy (FT-IR). Food science and technology research 10(2):137-142.

Nascimento, W. C. A., Silva, C. R., Carvalho, R. V., Martins, M. L. L. (2007). Otimização de um meio de cultura para produção de proteases por um Bacillus sp. temofílico. Food Science and Technology, 27(2):417-421

Norlia, M., Jinap, S., Nor-Khaizura, M. A. R., Son, R., Chin, C. K. , Sardjono (2018). Polyphasic approach to the identification and characterization of aflatoxigenic strains of Aspergillus section Flavi isolated from peanuts and peanut-based products marketed in Malaysia. International journal of food microbiology, 282:9-15. https://doi.org/10.1016/j.ijfoodmicro.2018.05.030

Oliveira, N. M. L., Vieira-Almeida, E. C., Silva, L. P., Paula, C. B. C., Bastos, L. T. A., Lima, A. C. M., Santos, I. L., Paula-Elias, F. C., Almeida, A. F. (2020). Lipases microbianas: Bioprocessos e aplicações industriais. Editora Poisson 5. Doi: 10.36229/978-65-86127-43-0.CAP.05

Pereira, A. S., Fontes-Sant’ana, G. C., Amaral, P. F. F. (2019). Mango agroindustrial wastes for lipase production from Yarrowia lipolytica and the potential of the fermented solid as a biocatalyst. Food and Bioproducts Processing, 15:68-77. https://doi.org/10.1016/j.fbp.2019.02.002

Pitt, J. L., Hocking, A. D. (1997). Fungi and food spoilage. Cambridge: Chapman & Hall

Putri, D. N., Khootama, A., Perdani, M. S., Utami, T. S., Hermansyah, H. (2020). Opitimization of Aspergillus niger lipase production by solid state fermentation of agro-industrial waste. Energy Reports, 6(1):331-335. https://doi.org/10.1016/j.egyr.2019.08.064

Reis, T. A., Baquião, A. C., Ataydea, D. D., Grabarz, F., Corrêa, B. (2014). Characterization of Aspergillus section Flavi isolated from organic Brazil nuts using a polyphasic approach. Food Microbiol, 42: 34–39. https://doi.org/10.1016/j.fm.2014.02.012

Sadh, P. K., Duhan, S., Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour. Bioprocess, 5(1). https://doi.org/10.1186/s40643-017-0187-z

Samson, R. A. (1974). Paecilomyce and some allied Hyphomycetes. Studies in Mycology, 1–119

Samson, R. A., Hoekstra, E. S., Frisvad, J. C. (2004). Introduction to food-and airborne fungi. Editora: Centalalbareau voor Schimmelcultures

Samson, R. A., Houbraken, J., Varga, J., Frisvad, J. C. (2009). Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs. Persoonia, 22:14–27

Seung-Beom, H., Seung-Joo, G., Hyeon-Dong, S., Frisvad, J. C., Samson, R. A. (2005). Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia, 97(6):1316-1329. https://doi.org/10.1080/15572536.2006.11832738

Silva, D. M., Batista, L. R., Rezende, E. F., Fungaro, M. H., Sartori, D., Alves, E. (2011). Identification of fungi of the genus Aspergillus section Nigri using polyphasic taxonomy. Brazilian Journal of Microbiology, 42(2):761-773. https://doi.org/10.1590/S1517-83822011000200044

Silva, I. L., Silva, L. A. O., Coelho, C. B. B. (2019). The Brazilian Caatinga Biome and its Biotechnological Potencial. Advances in Applied Science and Technology, 5: 123-142

Soares, C. M. F., Castro, H. F., Moraes, F. F., Zanin, G. M. (1999). Caracterization and utilization of Candida rugosa lipase immobilized on controlled pore sílica. Applied Biochesmistry and Biotechnology, 79(77):745-757

Souza, C. A. F., Lima, D. X., Oliveira, R. J. V., Gurgel, L. M. S., Santiago, A. L. C. M. (2016). Mucor indicus isolated from the semiarid region of Brazil: a first record for South America. Mycotaxon, 131(4):897-906. Doi: https://doi.org/10.5248/131.897

Souza, C. A. F., Lima, D. X., Oliveira, R. J. V., Gurgel, L. M. S., Santiago, A. L. C. M. (2017). Coprophilous Mucorales (Zygomycota) from three areas in the semi-arid of Pernambuco, Brazil. Brazilian journal of microbiology, 48(1):79-86. https://doi.org/10.1016/j.bjm.2016.09.008

Soccol, C. R., Costa, E. S. F., Letti, L. A. J., Karp, S. G., Woiciechowski, A. L., Vandenberghe, L. P. S. (2017). Recent developments and innovations in solid state fermentation. Biotechnology Research and Innovation, 1(!):52-71. https://doi.org/10.1016/j.biori.2017.01.002

Schipper, M. A. A. (1978). On certain species of Mucor with a key to all accepted species. Studies in Mycology, l7:l-53

Sherf, A. F. (1943). A method for maintaining Phytomonas sepedonica for long periods without trasnf. Phytopathology 33:30-32

Toscano, L., Monteiro, G., Stoycotcheva, M., Gochev, V., Cervantes, L., Campbell, H., Zlatev, R., Valdez, B., Pérez, C., Gil-Samaniego, M. (2013). Lipase production through solid-state fermentation using agro-industrial residues as substrates and newly isolated fungal strains. Biotechnology & Biotechnological Equipment, 27(5):4074-4077. https://doi.org/10.5504/BBEQ.2012.0145

Tripathi, B. C., Yadav, P., Sharma, R. (2020). Microbial Enzymes in Food Industry: Applications. Journal of Critical Reviews, 7(9):1418-1422

Trufem, S. F. B. (1981). Mucorales do Estado de São Paulo. 1. Gênero Mucor Micheli. Rickia

Varga, J., Frisvad, J. C., Samson, R. A. (2011). Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud. Mycol, 69:57–80. https://doi.org/10.3114/sim.2011.69.05

Yin-Yu, G., Wen-Wei, C., Lei, H., Liu, Y., Lin, X., Ruan, R. (2009). Optimization of transesterification conditions for the production of fatty acid methyl ester (FAME) from Chinese tallow kernel oil with surfactant-coated lipase. Biomass and bioenergy, 33(2):277-282. https://doi.org/10.1016/j.biombioe.2008.05.013

Downloads

Published

20/03/2022

How to Cite

FRANÇA, E. da S.; SOUZA, A. F. .; LEMOS, D. G. de L. .; LINS, U. M. de B. L.; CAMPOS-TAKAKI, G. M. de .; SILVA , C. A. A. da .; LIMA , M. A. B. de . Bioconversion of coffee ground to lipase by filamentous fungi isolated from the Igarassu River in the State of Pernambuco, Brazil. Research, Society and Development, [S. l.], v. 11, n. 4, p. e36011427515, 2022. DOI: 10.33448/rsd-v11i4.27515. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27515. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences