Forensic palynology: computer vision and geotechnologies to support criminalistics expertise

Authors

DOI:

https://doi.org/10.33448/rsd-v11i8.30422

Keywords:

Machine Learning; Geoprocessing; Homicide.

Abstract

Pollen grains can provide valuable information to forensic palynology, such as the time of death or the possible origin of a corpse. Forensic Palynology is a vital tool to be used in a criminal investigation because the different environment has distinct pollen signatures. Brazil has a rich and diversified flora that is suitable for the application of forensic palynology. The purpose of this research is to introduce palynology automation as a tool to improve the investigative method in forensic palynology and apply it to forensic palynology automation. The studied city has different vegetation types, in which we performed assessments to identify its correspondent pollen types. PALINOVIC algorithm was developed using computer vision and geotechnology techniques. Our results show that it is possible to correlate pollen grains found in forensic samples by automatic pollen identification and with a mapping of the likely vegetation. Our results show that it is possible to relate the presence of pollen grains found in forensic samples through the automatic identification of images together with a database of georeferenced plant species. It was possible to analyze the pollen grains collected in eight bodies, where the algorithm presented a performance of 90.51% in the pollen grain classification tests. Furthermore, pollen grains could be correlated with the type of vegetation where the body was found. Thus, the technique developed can be applied in other urban centers from a previous georeferencing of plants, as well as a pollen database.

References

Alotaibi, S. S., Sayed, S. M., Alosaimi, M., Alharthi, R., Banjar, A., Abdulqader, N., & Alhamed, R. (2020). Pollen molecular biology: Applications in the forensic palynology and future prospects: A review. Saudi Journal of Biological Sciences, 27(5), 1185–1190. https://doi.org/10.1016/j.sjbs.2020.02.019

Astolfi, G., Gonçalves, A. B., Menezes, G. V., Borges, F. S. B., Astolfi, A. C. M. N., Matsubara, E. T., Alvarez, M., & Pistori, H. (2020). POLLEN73S: An image dataset for pollen grains classification. Ecological Informatics, 60(101165), 101165. https://doi.org/10.1016/j.ecoinf.2020.101165

Boi, M. (2015). Pollen attachment in common materials. Aerobiologia, 31(2), 261–270. https://doi.org/10.1007/s10453-014-9362-2

Bryant, V. M. (2014). Pollen and Spore Evidence in Forensics. In Wiley Encyclopedia of Forensic Science (pp. 1–16). John Wiley & Sons, Ltd.

Bryant, V. M., & Holloway, R. G. (1983). The role of palynology in archaeology. Advances in Archaeological Method and Theory, 6, 191–224. http://www.jstor.org/stable/20210068

Daood, A. I., Ribeiro, E., & Bush, M. (2018). Sequential recognition of pollen grain Z-stacks by combining CNN and RNN. https://www.semanticscholar.org/paper/6ec2ed74e151a589149895be77f1b14a0a8c3c0d

Daood, A., Ribeiro, E., & Bush, M. (2016). Pollen grain recognition using deep learning. In Advances in Visual Computing (pp. 321–330). Springer International Publishing.

García, N. M., Chaves, V. A. E., Briceño, J. C., & Travieso, C. M. (2012). Pollen grains contour analysis on verification approach. In Lecture Notes in Computer Science (pp. 521–532). Springer Berlin Heidelberg.

Gonçalves, A. B., Godoi, R. F., Paranhos, A. C., FILHO, Folhes, M. T., & Pistori, H. (2018). Urban phytophysiognomy characterization using NDVI from satellites images and free software. Anuario Instituto de Geociencias, 41(3), 24–36. https://doi.org/10.11137/2018_3_24_36

Hand, L. (1901). Historical and practical considerations regarding expert testimony. Harvard Law Review, 15(1), 40. https://doi.org/10.2307/1322532

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.

Holt, K. A., & Bebbington, M. S. (2014). Separating morphologically similar pollen types using basic shape features from digital images: A preliminary study(1.). Applications in Plant Sciences, 2(8), 1400032. https://doi.org/10.3732/apps.1400032

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–2269.

Kumari, M., Sankhla, M. S., Nandan, M., Sharma, K., & Kumar, R. (2017). Role of forensic palynology in crime investigation. Ijournals.In. https://ijournals.in/wp-content/uploads/2017/07/1.5302-Rajeev.compressed.pdf

Mildenhall, D. C. (1990). Forensic palynology in New Zealand. Review of Palaeobotany and Palynology, 64(1–4), 227–234. https://doi.org/10.1016/0034-6667(90)90137-8

Mildenhall, D. C., Wiltshire, P. E. J., & Bryant, V. M. (2017). Forensic palynology: Why do it and how it works. Forensic Science International, 163(3), 163–172. https://www.academia.edu/32699708/Forensic_palynology_why_do_it_and_how_it_works

Milne, L., Bryant, V. M., Jr, & Mildenhall, D. C. (2005). Forensic palynology. In Forensic Botany:Principles and Applications to Criminal Casework (pp. 217–252). CRC Press.

Ministério do Meio Ambiente. (2013). Rapideye Satellite Constelation. Santiago & Cintra Consultoria, São Paulo.

Morgan, R. M., Davies, G., Balestri, F., & Bull, P. A. (2013). The recovery of pollen evidence from documents and its forensic implications. Science & Justice: Journal of the Forensic Science Society, 53(4), 375–384. https://doi.org/10.1016/j.scijus.2013.03.004

Ochando, J., Munuera, M., Carrión, J. S., Fernández, S., Amorós, G., & Recalde, J. (2018). Forensic palynology revisited: Case studies from semi-arid Spain. Review of Palaeobotany and Palynology, 259, 29–38. https://doi.org/10.1016/j.revpalbo.2018.09.015.

Pott, A. & Pott, V.J. (1994). Plantas do Pantanal. Corumbá, MS: Embrapa.

Rodrigues, C.N.M., Gonçalves, A.B., Silva, G.G., & Pistori, H. (2015). Evaluation of Machine Learning and Bag of Visual Words Techniques for Pollen Grains Classification. IEEE Latin America Transactions, v. 13, p. 1-8.

Sevillano, V., & Aznarte, J. L. (2018). Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks. PloS One, 13(9), e0201807. https://doi.org/10.1371/journal.pone.0201807

Sevillano, V., Holt, K., & Aznarte, J. L. (2020). Precise automatic classification of 46 different pollen types with convolutional neural networks. PloS One, 15(6), e0229751. https://doi.org/10.1371/journal.pone.0229751

Soares Da Silva, D., Nara Balta Quinta, L., Gonçalves, A. B., Pistori, H., & Borth, M. R. (n.d.). Application of wavelet transform in the classification of pollen grains. African Journal of Agricultural Research. https://doi.org/10.5897/AJAR2013.7495

Shalizi, C. (2006). Shannon Entropy and Kullback-Leibler Divergence. In: Shalizi C, Advanced Probability II, p. 189-196.

Ticay-Rivas, J. R., del Pozo-Baños, M., Travieso, C. M., Arroyo-Hernández, J., Pérez, S. T., Alonso, J. B., & Mora-Mora, F. (2011). Pollen classification based on geometrical, descriptors and colour features using decorrelation stretching method. In IFIP Advances in Information and Communication Technology (pp. 342–349). Springer Berlin Heidelberg.

Travieso, C. M., Briceno, J. C., Ticay-Rivas, J. R., & Alonso, J. B. (2011). Pollen classification based on contour features. 2011 15th IEEE International Conference on Intelligent Engineering Systems, 17–21.

Tribunal de Justiça de São Paulo. (2014). Vara do Tribunal do Júri da Comarca de Guarulhos/SP, Processo nº 572/10.

Wiltshire, P. E. J. (2006). Hair as a source of forensic evidence in murder investigations. Forensic Science International, 163(3), 241–248. https://doi.org/10.1016/j.forsciint.2006.06.070

Wiltshire, P. E. J., Hawksworth, D. L., & Edwards, K. J. (2015). A rapid and efficient method for evaluation of suspect testimony: Palynological scanning. Journal of Forensic Sciences, 60(6), 1441–1450. https://doi.org/10.1111/1556-4029.12835

Zavada, M. S., McGraw, S. M., & Miller, M. A. (2007). The role of clothing fabrics as passive pollen collectors in the north‐eastern United States. Grana, 46(4), 285–291. https://doi.org/10.1080/00173130701780104

Downloads

Published

20/06/2022

How to Cite

GONÇALVES, A. B.; ALBUQUERQUE, P. L. F.; ALVES, R. de F.; ASTOLFI, G.; BORGES, F. S. B.; CARMONA, M. dos S. .; CEREDA, M. P. .; CHAVES, S. A. de M.; FERREIRA, A. dos S.; GODOI, R. de F.; MENEZES, G. V.; OLIVEIRA, W. R. de; PARANHOS FILHO, A. C.; POTT, A.; REINHARD, K. J.; SANTOS, F. de A. R. dos; SU, H. .; PISTORI, H. Forensic palynology: computer vision and geotechnologies to support criminalistics expertise. Research, Society and Development, [S. l.], v. 11, n. 8, p. e31611830422, 2022. DOI: 10.33448/rsd-v11i8.30422. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30422. Acesso em: 23 nov. 2024.

Issue

Section

Agrarian and Biological Sciences