Palinología forense: visión computacional y geotecnologías para apoyar la experiencia criminal
DOI:
https://doi.org/10.33448/rsd-v11i8.30422Palabras clave:
Aprendizaje automático; Geoprocesamiento; Asesinato.Resumen
Los granos de polen pueden aportar información valiosa para la palinología forense, como mejorar la cínica hora de la muerte o señalar el circuito del vivo y su cadáver. En este aspecto, la Palinología Forense es una herramienta vital para ser utilizada en una investigación criminal, ya que los entornos tienen diferentes digitales de polen. La rica y diversa flora de Brasil es apta para la aplicación de esta técnica. El objetivo de esta investigación es mostrar cómo la automatización de la palinología como herramienta para mejorar el método investigativo en palinología forense. La ciudad fue seleccionada por presentar diversidad de tipos de vegetación en el medio urbano, la cual fue muestreada para identificar los tipos de polen que se presentan. El algoritmo PALINOVIC se desarrolló utilizando técnicas de visión artificial y geotecnologías. Nuestros resultados muestran que es posible relacionar la presencia de granos de polen encontrados en muestras forenses a través de la identificación automática de imágenes junto con una base de datos de especies vegetales georreferenciadas. Se logró establecer de manera rápida y confiable los granos de polen colectados en ocho cuerpos, donde el algoritmo presentó un desempeño de 90.51% en las pruebas de clasificación de granos de polen. Además, los granos de polen podrían correlacionarse con el tipo de vegetación donde se encontró el cuerpo. Así, la técnica desarrollada puede ser aplicada en otros núcleos urbanos a partir de una georreferenciación previa de plantas, así como de una base de datos de polen.
Citas
Alotaibi, S. S., Sayed, S. M., Alosaimi, M., Alharthi, R., Banjar, A., Abdulqader, N., & Alhamed, R. (2020). Pollen molecular biology: Applications in the forensic palynology and future prospects: A review. Saudi Journal of Biological Sciences, 27(5), 1185–1190. https://doi.org/10.1016/j.sjbs.2020.02.019
Astolfi, G., Gonçalves, A. B., Menezes, G. V., Borges, F. S. B., Astolfi, A. C. M. N., Matsubara, E. T., Alvarez, M., & Pistori, H. (2020). POLLEN73S: An image dataset for pollen grains classification. Ecological Informatics, 60(101165), 101165. https://doi.org/10.1016/j.ecoinf.2020.101165
Boi, M. (2015). Pollen attachment in common materials. Aerobiologia, 31(2), 261–270. https://doi.org/10.1007/s10453-014-9362-2
Bryant, V. M. (2014). Pollen and Spore Evidence in Forensics. In Wiley Encyclopedia of Forensic Science (pp. 1–16). John Wiley & Sons, Ltd.
Bryant, V. M., & Holloway, R. G. (1983). The role of palynology in archaeology. Advances in Archaeological Method and Theory, 6, 191–224. http://www.jstor.org/stable/20210068
Daood, A. I., Ribeiro, E., & Bush, M. (2018). Sequential recognition of pollen grain Z-stacks by combining CNN and RNN. https://www.semanticscholar.org/paper/6ec2ed74e151a589149895be77f1b14a0a8c3c0d
Daood, A., Ribeiro, E., & Bush, M. (2016). Pollen grain recognition using deep learning. In Advances in Visual Computing (pp. 321–330). Springer International Publishing.
García, N. M., Chaves, V. A. E., Briceño, J. C., & Travieso, C. M. (2012). Pollen grains contour analysis on verification approach. In Lecture Notes in Computer Science (pp. 521–532). Springer Berlin Heidelberg.
Gonçalves, A. B., Godoi, R. F., Paranhos, A. C., FILHO, Folhes, M. T., & Pistori, H. (2018). Urban phytophysiognomy characterization using NDVI from satellites images and free software. Anuario Instituto de Geociencias, 41(3), 24–36. https://doi.org/10.11137/2018_3_24_36
Hand, L. (1901). Historical and practical considerations regarding expert testimony. Harvard Law Review, 15(1), 40. https://doi.org/10.2307/1322532
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.
Holt, K. A., & Bebbington, M. S. (2014). Separating morphologically similar pollen types using basic shape features from digital images: A preliminary study(1.). Applications in Plant Sciences, 2(8), 1400032. https://doi.org/10.3732/apps.1400032
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–2269.
Kumari, M., Sankhla, M. S., Nandan, M., Sharma, K., & Kumar, R. (2017). Role of forensic palynology in crime investigation. Ijournals.In. https://ijournals.in/wp-content/uploads/2017/07/1.5302-Rajeev.compressed.pdf
Mildenhall, D. C. (1990). Forensic palynology in New Zealand. Review of Palaeobotany and Palynology, 64(1–4), 227–234. https://doi.org/10.1016/0034-6667(90)90137-8
Mildenhall, D. C., Wiltshire, P. E. J., & Bryant, V. M. (2017). Forensic palynology: Why do it and how it works. Forensic Science International, 163(3), 163–172. https://www.academia.edu/32699708/Forensic_palynology_why_do_it_and_how_it_works
Milne, L., Bryant, V. M., Jr, & Mildenhall, D. C. (2005). Forensic palynology. In Forensic Botany:Principles and Applications to Criminal Casework (pp. 217–252). CRC Press.
Ministério do Meio Ambiente. (2013). Rapideye Satellite Constelation. Santiago & Cintra Consultoria, São Paulo.
Morgan, R. M., Davies, G., Balestri, F., & Bull, P. A. (2013). The recovery of pollen evidence from documents and its forensic implications. Science & Justice: Journal of the Forensic Science Society, 53(4), 375–384. https://doi.org/10.1016/j.scijus.2013.03.004
Ochando, J., Munuera, M., Carrión, J. S., Fernández, S., Amorós, G., & Recalde, J. (2018). Forensic palynology revisited: Case studies from semi-arid Spain. Review of Palaeobotany and Palynology, 259, 29–38. https://doi.org/10.1016/j.revpalbo.2018.09.015.
Pott, A. & Pott, V.J. (1994). Plantas do Pantanal. Corumbá, MS: Embrapa.
Rodrigues, C.N.M., Gonçalves, A.B., Silva, G.G., & Pistori, H. (2015). Evaluation of Machine Learning and Bag of Visual Words Techniques for Pollen Grains Classification. IEEE Latin America Transactions, v. 13, p. 1-8.
Sevillano, V., & Aznarte, J. L. (2018). Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks. PloS One, 13(9), e0201807. https://doi.org/10.1371/journal.pone.0201807
Sevillano, V., Holt, K., & Aznarte, J. L. (2020). Precise automatic classification of 46 different pollen types with convolutional neural networks. PloS One, 15(6), e0229751. https://doi.org/10.1371/journal.pone.0229751
Soares Da Silva, D., Nara Balta Quinta, L., Gonçalves, A. B., Pistori, H., & Borth, M. R. (n.d.). Application of wavelet transform in the classification of pollen grains. African Journal of Agricultural Research. https://doi.org/10.5897/AJAR2013.7495
Shalizi, C. (2006). Shannon Entropy and Kullback-Leibler Divergence. In: Shalizi C, Advanced Probability II, p. 189-196.
Ticay-Rivas, J. R., del Pozo-Baños, M., Travieso, C. M., Arroyo-Hernández, J., Pérez, S. T., Alonso, J. B., & Mora-Mora, F. (2011). Pollen classification based on geometrical, descriptors and colour features using decorrelation stretching method. In IFIP Advances in Information and Communication Technology (pp. 342–349). Springer Berlin Heidelberg.
Travieso, C. M., Briceno, J. C., Ticay-Rivas, J. R., & Alonso, J. B. (2011). Pollen classification based on contour features. 2011 15th IEEE International Conference on Intelligent Engineering Systems, 17–21.
Tribunal de Justiça de São Paulo. (2014). Vara do Tribunal do Júri da Comarca de Guarulhos/SP, Processo nº 572/10.
Wiltshire, P. E. J. (2006). Hair as a source of forensic evidence in murder investigations. Forensic Science International, 163(3), 241–248. https://doi.org/10.1016/j.forsciint.2006.06.070
Wiltshire, P. E. J., Hawksworth, D. L., & Edwards, K. J. (2015). A rapid and efficient method for evaluation of suspect testimony: Palynological scanning. Journal of Forensic Sciences, 60(6), 1441–1450. https://doi.org/10.1111/1556-4029.12835
Zavada, M. S., McGraw, S. M., & Miller, M. A. (2007). The role of clothing fabrics as passive pollen collectors in the north‐eastern United States. Grana, 46(4), 285–291. https://doi.org/10.1080/00173130701780104
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Ariadne Barbosa Gonçalves; Pedro Lucas França Albuquerque; Rodolfo de França Alves; Gilberto Astolfi; Felipe Silveira Brito Borges; Milena dos Santos Carmona; Marney Pascoli Cereda; Sergio Augusto de Miranda Chaves; Alessandro dos Santos Ferreira; Raquel de Faria Godoi; Geazy Vilharva Menezes; Wedney Rodolpho de Oliveira; Antonio Conceição Paranhos Filho; Arnildo Pott; Karl Jan Reinhard; Francisco de Assis Ribeiro dos Santos; Hongbo Su; Hemerson Pistori
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.