Neonatal mortality and risk factors in the state of Paraná: temporal trend from 2000 to 2016

Authors

DOI:

https://doi.org/10.33448/rsd-v11i8.31392

Keywords:

Neonatal mortality; Time series; Generalized linear models; Quasi-Poisson model.

Abstract

To analyze the series of neonatal mortality rates in the state of Paraná and risk factors between 2000 and 2016. This is an ecological-descriptive-analytical study using Quasi-Poisson and Gaussian regression models. The factors gender and age of the child were considered; age and education of the mother. Neonatal and early neonatal mortality rates were, on average, higher for boys at approximately 2.6 and 2.4 deaths per 1,000 live births, respectively, reduction of one death every eight years for girls and one death every four years for boys at both rates. Every five years the early neonatal mortality rate decreased by 16% for mothers up to 19 years old and 12% for mothers over 19. For neonatal mortality rate there was a decrease of 11% every five years in both age groups. Among mothers with up to seven years of education, there is a drop of 6% in the neonatal mortality rate and 11% at the beginning, every five years. In all cases the late neonatal mortality rate was not significant. There was a significant reduction in the neonatal mortality rate in the state of Paraná in any period evaluated, with early neonatal mortality emerging as the main component of the decay; late neonatal mortality remained constant. On average, the risk of neonatal death is higher for boys; for babies whose mothers are up to nineteen and among newborns of mothers with up to seven years of schooling.

Author Biographies

Yana Miranda Borges, Instituto Federal de Educação, Ciência e Tecnologia do Amazonas

Departamento Acadêmico de Educação Básica e Formação de Professores - DAEF. Instituto Federal de Educação, Ciência e Tecnologia do Amazonas - IFAM

Eniuce Menezes de Souza, Universidade Estadual de Maringá

Universidade Estadual de Maringá (UEM). Departamento de Estatística (UEM)

Brian Alvarez Ribeiro de Melo, Universidade Estadual de Maringá

Universidade Estadual de Maringá (UEM). Departamento de Estatística (UEM)

Rosana Rosseto de Oliveira, Universidade Estadual de Maringá

Universidade Estadual de Maringá (UEM). Departamento de Estatística (UEM)

References

Alive, E. C. (2018). The urgent need to end newborn deaths. New York: UNICEF.

Alkema, L., Chao, F., You, D., Pedersen, J., & Sawyer, C. C. (2014). National, regional, and global sex ratios of infant, child, and under-5 mortality and identification of countries with outlying ratios: a systematic assessment. The Lancet Global Health, 2(9), e521-e530.

Brasil, & Ministério da Saúde. (2009). Manual de vigilância do óbito infantil e fetal e do Comitê de Prevenção do Óbito Infantil e Fetal.

Cavalcante, A. N. M., Araújo, M. A. L., Lopes, S. V. S., de Almeida, T. Í. F., & de Almeida, R. L. F. (2018). Epidemiologia da mortalidade neonatal no Ceará no período de 2005-2015. Revista Brasileira em Promoção da Saúde, 31(4).

Crawford, M. A., Doyle, W., & Meadows, N. (1987). Gender differences at birth and differences in fetal growth. Human Reproduction, 2(6), 517-520.

de Bulhões, T. R. B., Alves, J. B., Moreno, C. A., Silva, T. B., & Dutra, L. P. (2018). Prevalência de recém nascidos pré-termo de mães adolescentes. ID on line. Revista de psicologia, 12(39), 84-96.

Dhanireddy, R., Smith, Y. F., Hamosh, M., Mullon, D. K., Scanlon, J. W., & Hamosh, P. (1983). Respiratory distress syndrome in the newborn: Relationship to serum prolactin, thyroxine, and sex. Neonatology, 43(1-2), 9-15.

Green, M. S. (1992). The male predominance in the incidence of infectious diseases in children: a postulated explanation for disparities in the literature. International journal of epidemiology, 21(2), 381-386.

Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R. Journal of statistical software, 27, 1-22.

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.

Lansky, S., Friche, A. A. D. L., Silva, A. A. M. D., Campos, D., Bittencourt, S. D. D. A., Carvalho, M. L. D., ... & Cunha, A. J. L. A. D. (2014). Pesquisa Nascer no Brasil: perfil da mortalidade neonatal e avaliação da assistência à gestante e ao recém-nascido. Cadernos de saúde pública, 30, S192-S207.

Maindonald, J., & Braun, J. (2006). Data analysis and graphics using R: an example-based approach (Vol. 10). Cambridge University Press.

Mateus, A., & Caeiro, F. (2014, October). An R implementation of several randomness tests. In AIP Conference Proceedings (Vol. 1618, No. 1, pp. 531-534). American Institute of Physics.

Migoto, M. T., Oliveira, R. P. D., Silva, A. M. R., & Freire, M. H. D. S. (2018). Early neonatal mortality and risk factors: a case-control study in Paraná State. Revista Brasileira de Enfermagem, 71, 2527-2534.

Moral, R. A., Hinde, J., & Demétrio, C. G. (2017). Half-normal plots and overdispersed models in R: the hnp package. Journal of Statistical Software, 81, 1-23.

Morgenstern H. (1998). Ecologic studies. In: Rothman KJ, Greenland S. Modern Epidemiology. 2nd ed. Philadelphia: Lippincott-Raven. p.459-480.

Muniz, D. W. R., de Miranda, M. G., Costa, A. P., Lima, G. W. F., & de Araújo Vale, E. (2018). O Perfil Epidemiológico de Mortalidade Neonatal no Ambiente Hospitalar/The Epidemiological Profile of Neonatal Mortality in the Hospital Environment. Saúde em Foco, 118-128.

R Core Team, R. (2019). R Core Team R: a language and environment for statistical computing. Foundation for Statistical Computing.

Ripley, B. D. (2002). Modern applied statistics with S. springer.

Teixeira, G. A., Costa, F. M. D. L., Mata, M. D. S., Carvalho, J. B. L. D., Souza, N. L. D., & Silva, R. A. R. D. (2016). Fatores de risco para a mortalidade neonatal na primeira semana de vida. Fundam Care Online, 8(1), e4036-46.

Teixeira, J. A. M., Araujo, W. R. M., Maranhão, A. G. K., Cortez-Escalante, J. J., Rezende, L. F. M. D., & Matijasevich, A. (2019). Mortalidade no primeiro dia de vida: tendências, causas de óbito e evitabilidade em oito Unidades da Federação brasileira, entre 2010 e 2015. Epidemiologia e Serviços de Saúde, 28.

Teixeira, J. A. M. (2019). Mortalidade no primeiro dia de vida no Brasil: causas e prevenção (Doctoral dissertation, Universidade de São Paulo).

UNICEF, U. (2015). Levels and trends in child mortality. New York: UNICEF, 1-30.

Watanabe, T. M., Alencar, K. M., Marin, L. E., Simongini, R. L., Griep, R., & Cavalli, L. O. (2019). Idade materna, prematuridade, baixo peso e pré-natal como critérios de risco ao nascer no município de cascavel/pr, 2013. Revista Thêma et Scientia, 9(1), 169-186.

Wedderburn, R. W. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method. Biometrika, 61(3), 439-447.

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R (Vol. 574). New York: Springer.

Published

27/06/2022

How to Cite

BORGES, Y. M.; SOUZA, E. M. de .; MELO, B. A. R. de .; OLIVEIRA, R. R. de . Neonatal mortality and risk factors in the state of Paraná: temporal trend from 2000 to 2016. Research, Society and Development, [S. l.], v. 11, n. 8, p. e49511831392, 2022. DOI: 10.33448/rsd-v11i8.31392. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31392. Acesso em: 22 nov. 2024.

Issue

Section

Health Sciences