Películas y recubrimientos comestibles: concepto, aplicación y uso postcosecha de frutas y hortalizas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i9.31418

Palabras clave:

Biopolímeros; Embalajes biodegradable; Conservación de los alimentos.

Resumen

Hasta hace poco tiempo, el sabor y la apariencia eran los atributos más importantes de las frutas y otras verduras frescas, pero hoy en día, los consumidores están más preocupados por la seguridad alimentaria y los valores nutricionales, exigiendo el uso de menos productos químicos en las frutas y verduras. . En este contexto, se ha prestado mucha atención a la búsqueda de sustancias naturales capaces de actuar como antimicrobianos y antioxidantes, siendo una alternativa a los productos utilizados en el mantenimiento de la calidad de los alimentos. Este mayor interés se ha intensificado debido a las preocupaciones sobre los recursos naturales limitados de la reserva de combustibles fósiles y el impacto ambiental causado por el uso de materiales de embalaje a base de plástico no biodegradables. La demanda de productos renovables y biodegradables se ha convertido en una estrategia importante en el esfuerzo por reducir el impacto contaminante de los envases en el medio ambiente. Para superar este problema, se puede utilizar un enfoque de recubrimiento comestible en el que los biopolímeros surjan como posibles reemplazos de los materiales de envasado a base de petróleo. Conocidos como “plásticos verdes” o bioplásticos, están hechos de polímeros biodegradables como almidones, celulosa, alginato de sodio, entre otros, y se están realizando numerosos estudios para investigar la capacidad de los recubrimientos comestibles para preservar la calidad y prolongar la vida útil de las frutas y hortalizas frescas al actuar regulando las actividades metabólicas de las frutas además de la adición de principios activos que interactúan con el producto.

Citas

Acevedo-Fani, A., Soliva-Fortuny, R., & Martín-Belloso, O. (2017). Nanoemulsions as edible coatings. Current Opinion in Food Science, 15, 43–49. https://doi.org/10.1016/J.COFS.2017.06.002

Alcântara, L. O., Martins, M. E. de O., Sousa, J. R., Cerqueira, M. Â., Silva, A. L. C., Souza Filho, M. de S. M., & Souza, B. W. S. (2019). Wettability of edible coatings on Nile tilapia fillets (Oreochromis niloticus). Journal of Food Engineering, 247, 152–159. https://doi.org/10.1016/J.JFOODENG.2018.11.026

Almeida, C. L. de. (2018). Preparo e caracterização de esponjas à base de quitosana e policaprolactona (PCL). UFPB.

Andres Galindez, Dazaa, L. D., Homez-Jara, A., Eim, V. S., & Váquiro, H. A. (2019). Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature. Carbohydrate Polymers, 215, 143–150. https://doi.org/10.1016/J.CARBPOL.2019.03.074

Arcan, İ., Boyacı, D., & Yemenicioğlu, A. (2017). The Use of Zein and Its Edible Films for the Development of Food Packaging Materials. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21126-8

Aristizabal-Gil, M. V., Santiago-Toro, S., Sanchez, L. T., Pinzon, M. I., Gutierrez, J. A., & Villa, C. C. (2019). ZnO and ZnO/CaO nanoparticles in alginate films. Synthesis, mechanical characterization, barrier properties and release kinetics. Lwt, 112(May), 108217. https://doi.org/10.1016/j.lwt.2019.05.115

Arnon-Rips, H., Porat, R., & Poverenov, E. (2019). Enhancement of agricultural produce quality and storability using citral-based edible coatings; the valuable effect of nano-emulsification in a solid-state delivery on fresh-cut melons model. Food Chemistry, 277, 205–212. https://doi.org/10.1016/J.FOODCHEM.2018.10.117

Arnon-Rips, H., & Poverenov, E. (2018). Improving food products’ quality and storability by using Layer by Layer edible coatings. Trends in Food Science & Technology, 75, 81–92. https://doi.org/10.1016/J.TIFS.2018.03.003

Arnon, H., Zaitsev, Y., Porat, R., & Poverenov, E. (2014). Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biology and Technology, 87, 21–26. https://doi.org/10.1016/J.POSTHARVBIO.2013.08.007

Arquelau, P. B. de F., Silva, V. D. M., Garcia, M. A. V. T., Araújo, R. L. B. de, & Fante, C. A. (2019). Characterization of edible coatings based on ripe “Prata” banana peel flour. Food Hydrocolloids, 89, 570–578. https://doi.org/10.1016/J.FOODHYD.2018.11.029

Arroyo, B. J., Bezerra, A. C., Oliveira, L. L., Arroyo, S. J., Melo, E. A. de, & Santos, A. M. P. (2020). Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry, 309(August 2018), 125566. https://doi.org/10.1016/j.foodchem.2019.125566

Bagheri, V., Ghanbarzadeh, B., Ayaseh, A., Ostadrahimi, A., Ehsani, A., Alizadeh-Sani, M., & Adun, P. A. (2019). The optimization of physico-mechanical properties of bionanocomposite films based on gluten/ carboxymethyl cellulose/ cellulose nanofiber using response surface methodology. Polymer Testing, 78, 105989. https://doi.org/10.1016/J.POLYMERTESTING.2019.105989

Basiak, E., Linke, M., Debeaufort, F., Lenart, A., & Geyer, M. (2019). Dynamic behaviour of starch-based coatings on fruit surfaces. Postharvest Biology and Technology, 147, 166–173. https://doi.org/10.1016/J.POSTHARVBIO.2018.09.020

Bosquez-Molina, E., Guerrero-Legarreta, I., & Vernon-Carter, E. J. (2003). Moisture barrier properties and morphology of mesquite gum–candelilla wax based edible emulsion coatings. Food Research International, 36(9–10), 885–893. https://doi.org/10.1016/S0963-9969(03)00097-8

Boyacı, D., Iorio, G., Sozbilen, G. S., Alkan, D., Trabattoni, S., Pucillo, F., … Yemenicioğlu, A. (2019). Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: Test of coatings on inoculated melons. Food Packaging and Shelf Life, 20(October 2018), 100316. https://doi.org/10.1016/j.fpsl.2019.100316

Cerqueira, M. Â. P. R., Pereira, R. N. C., Ramos, Ó. L. da S., Teixeira, J. A. C., & Vicente, A. A. (2016). Edible food packaging : materials and processing technologies. New York.

Chen, H., Sun, Z., & Yang, H. (2019). Effect of carnauba wax-based coating containing glycerol monolaurate on the quality maintenance and shelf-life of Indian jujube (Zizyphus mauritiana Lamk.) fruit during storage. Scientia Horticulturae, 244, 157–164. https://doi.org/10.1016/J.SCIENTA.2018.09.039

Chevalier, E., Chaabani, A., Assezat, G., Prochazka, F., & Oulahal, N. (2018). Casein/wax blend extrusion for production of edible films as carriers of potassium sorbate—A comparative study of waxes and potassium sorbate effect. Food Packaging and Shelf Life, 16, 41–50. https://doi.org/10.1016/J.FPSL.2018.01.005

Chuayjuljit, S., Su-uthai, S., & Charuchinda, S. (2010). Poly(vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study. Waste Management & Research : The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 28(2), 109–117. https://doi.org/10.1177/0734242X09339324

Coelho, C. C. de S., Fonseca, M. J. de O., Soares, A. G., Campos, R. D. S., & Freitas-Silva, O. (2017). Aplicação De Revestimento Filmogênico À Base De Amido De Mandioca E De Óleo De Cravo-Da-Índia Na Conservação Pós-Colheita De Goiaba ‘Pedro Sato.’ Revista Engenharia Na Agricultura - Reveng, 25(6), 479–490. https://doi.org/10.13083/reveng.v25i6.723

Comaposada, J., Gou, P., Marcos, B., & Arnau, J. (2015). Physical properties of sodium alginate solutions and edible wet calcium alginate coatings. LWT - Food Science and Technology, 64(1), 212–219. https://doi.org/10.1016/J.LWT.2015.05.043

Costa, M. J., Maciel, L. C., Teixeira, J. A., Vicente, A. A., & Cerqueira, M. A. (2018). Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Research International, 107, 84–92. https://doi.org/10.1016/J.FOODRES.2018.02.013

da Silva, I. J., de Veredas, V., dos Santos, M. A. G., Santana, C. C., Carpes, M. J. S., & Correia, C. R. D. (2006). Simulated moving bed chromatography in the production of enantiomerically pure or enriched compounds in large scale. Quimica Nova, 29(5), 1027–1037. https://doi.org/10.1590/s0100-40422006000500024

Daniela Cardozo Bagatini. (2017). Extração de gelatina de peles de pescada-olhuda (Cynoscion guatucupa) para aplicação em embalagens biodegradáveis para alimentos.

de Freitas, C. A. S., de Sousa, P. H. M., Soares, D. J., da Silva, J. Y. G., Benjamin, S. R., & Guedes, M. I. F. (2019). Carnauba wax uses in food – A review. Food Chemistry, 291, 38–48. https://doi.org/10.1016/J.FOODCHEM.2019.03.133

Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505–513. https://doi.org/10.1016/J.FOODCHEM.2017.07.034

Ebrahimi, B., Mohammadi, R., Rouhi, M., Mortazavian, A. M., Shojaee-Aliabadi, S., & Koushki, M. R. (2018). Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT, 87, 54–60. https://doi.org/10.1016/J.LWT.2017.08.066

Elanthikkal, S., Gopalakrishnapanicker, U., Varghese, S., & Guthrie, J. T. (2010). Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydrate Polymers, 80(3), 852–859. https://doi.org/10.1016/j.carbpol.2009.12.043

Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. Materials Science and Engineering: C, 33(4), 1819–1841. https://doi.org/10.1016/J.MSEC.2013.01.010

Eom, H., Chang, Y., Lee, E., Choi, H.-D., & Han, J. (2018). Development of a starch/gum-based edible coating for rice cakes to retard retrogradation during storage. LWT, 97, 516–522. https://doi.org/10.1016/J.LWT.2018.07.044

Fonseca, M. J. de O., Soares, A. G., Barboza, H. T. G., Carvalho, M. A. G., & Júnior, A. C. V. N. (2016). Uso de Revestimento Comestível para Extensão da Vida Útil da Goiaba ‘Pedro Sato.’ Engenharia Na Agricultura, pp. 101–110. https://doi.org/10.13083/1414-3984/reveng.v24n2p101-110

Fratari, S. C., Oliveira, A. P. de, Faria, R. A. P. G. de, & Villa, R. D. (2021). REVESTIMENTOS COMESTÍVEIS PARA CONSERVAÇÃO PÓS COLHEITA DE BANANA: UMA REVISÃO. In Avanços em Ciência e Tecnologia de Alimentos - Volume 4 (Vol. 4, pp. 444–467). Editora Científica Digital. https://doi.org/10.37885/210203091

Gol, B., & Rao, T. V. R. (2014). Influence of zein and gelatin coatings on the postharvest quality and shelf life extension of mango ( Mangifera indica L.). Fruits, 69(2), 101–115. https://doi.org/10.1051/fruits/2014002

Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. E., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 25(8), 1813–1827. https://doi.org/10.1016/J.FOODHYD.2011.02.007

Hajji, S., Younes, I., Affes, S., Boufi, S., & Nasri, M. (2018). Optimization of the formulation of chitosan edible coatings supplemented with carotenoproteins and their use for extending strawberries postharvest life. Food Hydrocolloids, 83, 375–392. https://doi.org/10.1016/J.FOODHYD.2018.05.013

Hamedi, H., Kargozari, M., Shotorbani, P. M., Mogadam, N. B., & Fahimdanesh, M. (2017). A novel bioactive edible coating based on sodium alginate and galbanum gum incorporated with essential oil of Ziziphora persica: The antioxidant and antimicrobial activity, and application in food model. Food Hydrocolloids, 72, 35–46. https://doi.org/10.1016/J.FOODHYD.2017.05.014

Han, J. H. (2014). Edible Films and Coatings: A Review. Innovations in Food Packaging. Academic Press. https://doi.org/10.1016/B978-0-12-394601-0.00009-6

Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/J.IJBIOMAC.2017.11.097

Huq, T., Salmieri, S., Khan, A., Khan, R. A., Le Tien, C., Riedl, B., … Lacroix, M. (2012). Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydrate Polymers, 90(4), 1757–1763. https://doi.org/10.1016/j.carbpol.2012.07.065

Jiao, W., Shu, C., Li, X., Cao, J., Fan, X., & Jiang, W. (2019). Preparation of a chitosan-chlorogenic acid conjugate and its application as edible coating in postharvest preservation of peach fruit. Postharvest Biology and Technology, 154, 129–136. https://doi.org/10.1016/J.POSTHARVBIO.2019.05.003

Jorge, T. de S., Soares, A. G., Fonseca, M. J. de O., Barboza, H. T. G., Junior, M. F., Oliveira, A. H., … Barbosa, W. J. (2013). Evaluation of Packaging and Edible Coating on Postharvest Strawberry. 7th International Postharvest Symposium, (November), 533–538. https://doi.org/10.17660/ActaHortic.2013.1012.71

K.S., J., Jose, J., Li, T., Thomas, M., Shankregowda, A. M., Sreekumaran, S., … Thomas, S. (2020). Application of novel zinc oxide reinforced xanthan gum hybrid system for edible coatings. International Journal of Biological Macromolecules, 151, 806–813. https://doi.org/10.1016/J.IJBIOMAC.2020.02.085

Koushesh Saba, M., & Amini, R. (2017). Nano-ZnO/carboxymethyl cellulose-based active coating impact on ready-to-use pomegranate during cold storage. Food Chemistry, 232, 721–726. https://doi.org/10.1016/J.FOODCHEM.2017.04.076

Lan, Y. (2019). Waxes. Encyclopedia of Food Chemistry, 312–316. https://doi.org/10.1016/B978-0-08-100596-5.22344-5

Li, J., Sun, Q., Sun, Y., Chen, B., Wu, X., & Le, T. (2019). Improvement of banana postharvest quality using a novel soybean protein isolate/cinnamaldehyde/zinc oxide bionanocomposite coating strategy. Scientia Horticulturae, 258, 1–7. https://doi.org/10.1016/J.SCIENTA.2019.108786

Li, X. yu, Du, X. long, Liu, Y., Tong, L. jing, Wang, Q., & Li, J. long. (2019). Rhubarb extract incorporated into an alginate-based edible coating for peach preservation. Scientia Horticulturae, 257(July), 108685. https://doi.org/10.1016/j.scienta.2019.108685

Liu, C., Huang, J., Zheng, X., Liu, S., Lu, K., Tang, K., & Liu, J. (2020). Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packaging and Shelf Life, 24(November 2019), 100485. https://doi.org/10.1016/j.fpsl.2020.100485

Low, L. E., Siva, S. P., Ho, Y. K., Chan, E. S., & Tey, B. T. (2020). Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Advances in Colloid and Interface Science, 277, 102117. https://doi.org/10.1016/j.cis.2020.102117

Ma, X., Chang, P. R., & Yu, J. (2008). Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3), 369–375. https://doi.org/10.1016/j.carbpol.2007.09.002

Mannucci, A., Serra, A., Remorini, D., Castagna, A., Mele, M., Scartazza, A., & Ranieri, A. (2017). Aroma profile of Fuji apples treated with gelatin edible coating during their storage. LWT - Food Science and Technology, 85, 28–36. https://doi.org/10.1016/j.lwt.2017.06.061

Md Nor, S., & Ding, P. (2020). Trends and advances in edible biopolymer coating for tropical fruit: A review. Food Research International, 134, 109208. https://doi.org/10.1016/J.FOODRES.2020.109208

Mirzaei-Mohkam, A., Garavand, F., Dehnad, D., Keramat, J., & Nasirpour, A. (2019). Optimisation, antioxidant attributes, stability and release behaviour of carboxymethyl cellulose films incorporated with nanoencapsulated vitamin E. Progress in Organic Coatings, 134, 333–341. https://doi.org/10.1016/J.PORGCOAT.2019.05.026

Nallan Chakravartula, S. S., Cevoli, C., Balestra, F., Fabbri, A., & Dalla Rosa, M. (2019). Evaluation of drying of edible coating on bread using NIR spectroscopy. Journal of Food Engineering, 240, 29–37. https://doi.org/10.1016/J.JFOODENG.2018.07.009

Neves Junior, A. C. V., Coneglian, R. C. C., Soares, A. G., Freitas, D. de G. C., Fonseca, M. J. O., & Barboza, H. T. G. (2013). Evaluation of Refrigerated Storage of ’ Mikado ’ Fresh Persimmon Using Edible Coatings Evaluation of Refrigerated Storage of ‘ Mikado ’ Fresh Persimmon Using Edible Coatings. Acta Horticulturae, (November), 1517–1522. https://doi.org/10.17660/ActaHortic.2013.1012.206

Neves Junior, A. C. V., Coneglian, R. C. C., Soares, A. G., Freitas, D. de G. C., Fonseca, M. J. O., Barreira, F. R., & Miranda, A. F. M. de. (2012). Physical and sensory characterization of edible coatings applied to minimally processed persimmon Physical and Sensory Characterization of Edible Coatings Applied to Minimally Processed Persimmon. Acta Horticulturae, (December 2015), 537–542. https://doi.org/10.17660/ActaHortic.2012.934.71

Nourbakhsh, S., Talebian, A., & Faramarzi, S. (2017). Preparation and Characterization of Gelatin/ZnO Nano-Composite Film. Materials Today: Proceedings, 4(7), 7038–7043. https://doi.org/10.1016/J.MATPR.2017.07.035

Nouri Ala, M. A., & Shahbazi, Y. (2019). The effects of novel bioactive carboxymethyl cellulose coatings on food-borne pathogenic bacteria and shelf life extension of fresh and sauced chicken breast fillets. LWT, 111, 602–611. https://doi.org/10.1016/J.LWT.2019.05.092

Ortiz-Duarte, G., Pérez-Cabrera, L. E., Artés-Hernández, F., & Martínez-Hernández, G. B. (2019). Ag-chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon. Postharvest Biology and Technology, 147, 174–184. https://doi.org/10.1016/J.POSTHARVBIO.2018.09.021

Pellá, M. C. G., Silva, O. A., Pellá, M. G., Beneton, A. G., Caetano, J., Simões, M. R., & Dragunski, D. C. (2020). Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating. Food Chemistry, 309(March 2019), 125764. https://doi.org/10.1016/j.foodchem.2019.125764

Rangel-Marrón, M., Mani-López, E., Palou, E., & López-Malo, A. (2019). Effects of alginate-glycerol-citric acid concentrations on selected physical, mechanical, and barrier properties of papaya puree-based edible films and coatings, as evaluated by response surface methodology. LWT, 101, 83–91. https://doi.org/10.1016/J.LWT.2018.11.005

Rico, M., Rodríguez-Llamazares, S., Barral, L., Bouza, R., & Montero, B. (2016). Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose. Carbohydrate Polymers, 149, 83–93. https://doi.org/10.1016/j.carbpol.2016.04.087

Ruan, C., Zhang, Y., Sun, Y., Gao, X., Xiong, G., & Liang, J. (2019). Effect of sodium alginate and carboxymethyl cellulose edible coating with epigallocatechin gallate on quality and shelf life of fresh pork. International Journal of Biological Macromolecules, 141, 178–184. https://doi.org/10.1016/j.ijbiomac.2019.08.247

Sánchez-Ortega, I., García-Almendárez, B. E., Santos-López, E. M., Reyes-González, L. R., & Regalado, C. (2016). Characterization and antimicrobial effect of starch-based edible coating suspensions. Food Hydrocolloids, 52, 906–913. https://doi.org/10.1016/J.FOODHYD.2015.09.004

Sani, I. K., Pirsa, S., & Tağı, Ş. (2019). Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polymer Testing, 79, 106004. https://doi.org/10.1016/J.POLYMERTESTING.2019.106004

Saral Sarojini, K., Indumathi, M. P., & Rajarajeswari, G. R. (2019). Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. International Journal of Biological Macromolecules, 124, 163–174. https://doi.org/10.1016/j.ijbiomac.2018.11.195

Saucedo-Pompa, S., Rojas-Molina, R., Aguilera-Carbó, A. F., Saenz-Galindo, A., Garza, H. de La, Jasso-Cantú, D., & Aguilar, C. N. (2009). Edible film based on candelilla wax to improve the shelf life and quality of avocado. Food Research International, 42(4), 511–515. https://doi.org/10.1016/J.FOODRES.2009.02.017

Soradech, S., Nunthanid, J., Limmatvapirat, S., & Luangtana-anan, M. (2017). Utilization of shellac and gelatin composite film for coating to extend the shelf life of banana. Food Control, 73, 1310–1317. https://doi.org/10.1016/j.foodcont.2016.10.059

Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., & Vicente, A. (2010). The Use of Electric Fields for Edible Coatings and Films Development and Production: A Review. Food Engineering Reviews, 2(4), 244–255. https://doi.org/10.1007/s12393-010-9029-x

Spasojević, L., Katona, J., Bučko, S., Savić, S. M., Petrović, L., Milinković Budinčić, J., … Sharipova, A. (2019). Edible water barrier films prepared from aqueous dispersions of zein nanoparticles. LWT, 109, 350–358. https://doi.org/10.1016/J.LWT.2019.04.038

Stockler, I. (2019). Principais leis ambientais. Retrieved June 22, 2022, from https://iusnatura.com.br/principais-leis-ambientais/

Tahir, H. E., Xiaobo, Z., Mahunu, G. K., Arslan, M., Abdalhai, M., & Zhihua, L. (2019). Recent developments in gum edible coating applications for fruits and vegetables preservation: A review. Carbohydrate Polymers, 224(July), 115141. https://doi.org/10.1016/j.carbpol.2019.115141

Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016). Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, 137, 360–374. https://doi.org/10.1016/J.CARBPOL.2015.10.074

Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079–1089. https://doi.org/10.1016/J.IJBIOMAC.2019.03.190

Theóphilo Galvão, A. M. M., de Oliveira Araújo, A. W., Carneiro, S. V., Zambelli, R. A., & do Socorro Rocha Bastos, M. (2018). Coating development with modified starch and tomato powder for application in frozen dough. Food Packaging and Shelf Life, 16, 194–203. https://doi.org/10.1016/J.FPSL.2018.04.003

Tsai, M. J., & Weng, Y. M. (2019). Novel edible composite films fabricated with whey protein isolate and zein: Preparation and physicochemical property evaluation. Lwt, 101(August 2018), 567–574. https://doi.org/10.1016/j.lwt.2018.11.068

Valencia-Chamorro, S. A., Palou, L., Delŕio, M. A., & Pérez-Gago, M. B. (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 51(9), 872–900. https://doi.org/10.1080/10408398.2010.485705

Valizadeh, S., Naseri, M., Babaei, S., Hosseini, S. M. H., & Imani, A. (2019). Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid. International Journal of Biological Macromolecules, 134, 604–612. https://doi.org/10.1016/J.IJBIOMAC.2019.05.071

Xu, Y., Chu, Y., Feng, X., Gao, C., Wu, D., Cheng, W., … Tang, X. (2020). Effects of zein stabilized clove essential oil Pickering emulsion on the structure and properties of chitosan-based edible films. International Journal of Biological Macromolecules, 156, 111–119. https://doi.org/10.1016/j.ijbiomac.2020.04.027

Yan, J., Luo, Z., Ban, Z., Lu, H., Li, D., Yang, D., … Li, L. (2019). The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biology and Technology, 147, 29–38. https://doi.org/10.1016/J.POSTHARVBIO.2018.09.002

Yeddes, W., Djebali, K., Aidi Wannes, W., Horchani-Naifer, K., Hammami, M., Younes, I., & Saidani Tounsi, M. (2020). Gelatin-chitosan-pectin films incorporated with rosemary essential oil: Optimized formulation using mixture design and response surface methodology. International Journal of Biological Macromolecules, 154, 92–103. https://doi.org/10.1016/j.ijbiomac.2020.03.092

Zhao, Y. (2019). Edible Coatings for Extending Shelf-Life of Fresh Produce During Postharvest Storage. Encyclopedia of Food Security and Sustainability, 506–510. https://doi.org/10.1016/B978-0-08-100596-5.22262-2

Zhu, Q., Li, Y., Li, S., & Wang, W. (2020). Fabrication and characterization of acid soluble collagen stabilized Pickering emulsions. Food Hydrocolloids, 106(December 2019), 105875. https://doi.org/10.1016/j.foodhyd.2020.105875

Publicado

03/07/2022

Cómo citar

BARBOZA, H. T. G. .; SOARES, A. G. .; FERREIRA, J. C. S. .; FREITAS SILVA, O. Películas y recubrimientos comestibles: concepto, aplicación y uso postcosecha de frutas y hortalizas. Research, Society and Development, [S. l.], v. 11, n. 9, p. e9911931418, 2022. DOI: 10.33448/rsd-v11i9.31418. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31418. Acesso em: 17 jul. 2024.

Número

Sección

Revisiones