Air pollution reduces breathing capacity during maximum exercise

Authors

DOI:

https://doi.org/10.33448/rsd-v11i15.36565

Keywords:

Atmospheric pollution; Health; Respiratory system.

Abstract

Introduction: The increase in air pollution in recent decades is notorious, especially in urban centers, where there has been a disorderly process of industrialization and population growth. Residents of urban centers are exposed to pollutants that negatively influence organic systems, primarily the cardiorespiratory system. Residents of coastal areas enjoy a cleaner environment. Our objective was to evaluate the influence of different concentrations of atmospheric pollutants on respiratory variables during maximal stress test. Methodology: Eighty men aged 40 years and over were evaluated, divided into 2 groups: Residents of São Paulo, Group 1 and residents of Baixada Santista, Group 2. Participants underwent a cardiorespiratory test, determining their physical fitness level (VO2max) and the variables: ventilatory equivalent of carbon dioxide (VE/VCO2), pulmonary ventilation (VE) and ventilatory equivalent of oxygen (V/VO2). Data were presented as mean ± standard deviation. STATISTIC 9.0 was used for the analysis and the one-way variance test was applied to compare respiratory data between groups. Results: The groups were similar in peak oxygen consumption: Group 1= 17.5±0.04 ml/kg/min and Group 2, 18.3±0.08 ml/kg/min. Group 1 presented altered ventilatory responses during the cardiorespiratory test when compared to Group 2: (VE=80±0.3 ml and VE=70±0.2 ml, p=0.004), (VE/VCO2=35.7±0, 3 units and VE/VCO2=31.7±0.1 units, p=0.003) and (V/VO2=36.5±0.2 units and V/VO2=31.6±0.1units, p=0.03 Conclusion: Individuals residing in São Paulo have decreased respiratory efficiency when compared to residents of coastal regions during maximal effort test.

References

Adamkiewicz, G., Ebelt, S., Syring, M., Slater, J., Speizer, F. E., Schwartz, J., Suh, H., & Gold, D. R. (2004). Association between air pollution exposure and exhaled nitric oxide in an elderly population. Thorax, 59(3), 204–209. https://doi.org/10.1136/thorax.2003.006445

Al-Kindi, S. G., Brook, R. D., Biswal, S., & Rajagopalan, S. (2020). Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nature reviews. Cardiology, 17(10), 656–672. https://doi.org/10.1038/s41569-020-0371-2

Castro, H. A. D., Hacon, S., Argento, R., Junger, W. L., Mello, C. F. D., Castiglioni Júnior, N., & Costa, J. G. D. (2007). Air pollution and respiratory diseases in the Municipality of Vitória, Espírito Santo State, Brazil. Cadernos de Saúde Pública, 23, S630-S642.

Companhia Ambiental do Estado de São Paulo (CETESB) (2019). Qualidade do Ar. Cetesb.sp. Consultado a 13 de maio de 2022. https://cetesb.sp.gov.br/ar/wp-content/uploads/sites/28/2019/05/Relat%C3%B3rio-de-Qualidade-do-Ar

DeMeo, D. L., Zanobetti, A., Litonjua, A. A., Coull, B. A., Schwartz, J., & Gold, D. R. (2004). Ambient air pollution and oxygen saturation. American Journal of Respiratory and Critical Care Medicine, 170(4), 383–387. https://doi.org/10.1164/rccm.200402-244OC

Dockery, D. W., Pope, C. A., 3rd, Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G., Jr, & Speizer, F. E. (1993). An association between air pollution and mortality in six U.S. cities. The New England Journal of Medicine, 329(24), 1753–1759. https://doi.org/10.1056/NEJM199312093292401

Downs, S. H., Schindler, C., Liu, L.-J. S., Keidel, D., Bayer-Oglesby, L., Brutsche, M. H., Gerbase, M. W., Keller, R., Künzli, N., Leuenberger, P., Probst-Hensch, N. M., Tschopp, J.-M., Zellweger, J.-P., Rochat, T., Schwartz, J., Ackermann-Liebrich, U., & SAPALDIA Team. (2007). Reduced exposure to PM10 and attenuated age-related decline in lung function. The New England Journal of Medicine, 357(23), 2338–2347. https://doi.org/10.1056/NEJMoa073625

Fajersztajn, L., Saldiva, P., Pereira, L. A. A., Leite, V. F., & Buehler, A. M. (2017). Short-term effects of fine particulate matter pollution on daily health events in Latin America: a systematic review and meta-analysis. International Journal of Public Health, 62(7), 729–738. https://doi.org/10.1007/s00038-017-0960-y

World Health Organization. (2015). Investing to overcome the global impact of neglected tropical diseases: Third WHO report on neglected tropical diseases 2015. Consultado 13 de maio de 2022. http://www.who.int/publications.i.item/Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected tropical diseases

Godoy, M. L. D. P., Godoy, J. M., Roldão, L. A., Soluri, D. S., & Donagemma, R. A. (2009). Coarse and fine aerosol source apportionment in Rio de Janeiro, Brazil. Atmospheric Environment (Oxford, England: 1994), 43(14), 2366–2374. https://doi.org/10.1016/j.atmosenv.2008.12.046

Gouveia, N., Mendonça, G., Leon, A. P., Correia, J., & Junger, W. L. (2003). Air pollution and health effects in two Brazilian metropolis. Epidemiologia e Serviços de Saúde, 12, 29–40.

Kaiser, J. (1997). Showdown over clean air science. Science (New York, N.Y.), 277(5325), 466–469. https://doi.org/10.1126/science.277.5325.466

La Rovere, M. T., Pinna, G. D., Maestri, R., Mortara, A., Capomolla, S., Febo, O., Ferrari, R., Franchini, M., Gnemmi, M., Opasich, C., Riccardi, P. G., Traversi, E., & Cobelli, F. (2003). Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation, 107(4), 565–570. https://doi.org/10.1161/01.cir.0000047275.25795.17

Libby, P., Ridker, P. M., & Maseri, A. (2002). Inflammation and atherosclerosis. Circulation, 105(9), 1135–1143. https://doi.org/10.1161/hc0902.104353

Mascarenhas, M. D. M., Vieira, L. C., Lanzieri, T. M., Leal, A. P. P. R., Duarte, A. F., & Hatch, D. L. (2008). Poluição atmosférica devida à queima de biomassa florestal e atendimentos de emergência por doença respiratória em Rio Branco, Brasil - Setembro, 2005. Jornal brasileiro de pneumologia: publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia, 34(1), 42–46. https://doi.org/10.1590/s1806-37132008000100008

Moura, P. H., Santos, D. W. L., Silva, J. M., Pereira, P. G., da Silva, F. G. (2021). Poluição atmosférica e hospitalizações por agravos em idosos em Nova Iguaçu. Estudos interdisciplinares envelhecimento, 1, 411-430. DOI: 10.22456/2316-2171.101855

Nemmar, A., Hoylaerts, M. F., Hoet, P. H. M., & Nemery, B. (2004). Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicology Letters, 149(1–3), 243–253. https://doi.org/10.1016/j.toxlet.2003.12.061

Paolocci, G., Bauleo, L., Folletti, I., Murgia, N., Muzi, G., & Ancona, C. (2020). Industrial air pollution and respiratory health status among residents in an industrial area in Central Italy. International Journal of Environmental Research and Public Health, 17(11), 3795. https://doi.org/10.3390/ijerph17113795

Pereira, A. S., Shitusuka, D. M., Parreira, F. J., & Shituka, R. (2018). Metodologia da pesquisa científica.

Pereira, B. B. & Limongi, J. E. (2015) Epidemiologia de desfeschos na saúde humana relacionados à poluição atmosférica no Brasil: Revisão sistemática. Cadernos de Saúde Coletiva, 23 (2): 91-100. DOI: 10.1590/1414-462X201400050103

Pope, C. A., 3rd, Thun, M. J., Namboodiri, M. M., Dockery, D. W., Evans, J. S., Speizer, F. E., & Heath, C. W., Jr. (1995). Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. American Journal of Respiratory and Critical Care Medicine, 151(3 Pt 1), 669–674. https://doi.org/10.1164/ajrccm/151.3_Pt_1.669

Rundell, K. W., Anderson, S. D., Sue-Chu, M., Bougault, V., & Boulet, L.-P. (2015). Air quality and temperature effects on exercise-induced bronchoconstriction. Comprehensive Physiology, 5(2), 579–610. https://doi.org/10.1002/cphy.c130013

Samet, J. M., Cohen, A. J., Holgate, S. T., Samet, J. M., & Koren, H. S. (1999). Air Pollution and Lung Cancer (A. Pollutions & Health, Orgs.). Academic Press: 1. Ed. London, United Kingdom.

Schwartz, J., & Dockery, D. W. (1992). Increased mortality in Philadelphia associated with daily air pollution concentrations. The American Review of Respiratory Disease, 145(3), 600–604. https://doi.org/10.1164/ajrccm/145.3.600

Souza, M. B., Saldiva, P. H. N., Pope, C. A., III, & Capelozzi, V. L. (1998). Respiratory changes due to long-term exposure to urban levels of air pollution. hest, 113(5), 1312–1318. https://doi.org/10.1378/chest.113.5.1312

Task Force of the European Society of Cardiology the North A Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065. https://doi.org/10.1161/01.cir.93.5.1043

Van Eeden, S. F., Yeung, A., Quinlam, K., & Hogg, J. C. (2004). Systemic Response to Ambient Particulate Matter: Relevance to Chronic Obstructive Pulmonary Diasease. Proc. Am. Thorac. Soc, 2, 61–67. https://doi.org/10.1513/pats.200406-035MS

Zelikoff, J. T., Chen, L. C., Cohen, M. D., Fang, K., & Gordon, T. (2003). Effects of Inhaled Ambient Particulate Matter on Pulmonary Antimicrobial Immune Defense. Inhal. Toxicol, 15, 131–150. https://doi.org/10.1080/08958370304478

Published

09/11/2022

How to Cite

RAMOS, N. T.; TEIXEIRA, C. S.; GONÇALVES, A. B.; FRADE, L. V. .; SILVA, A. G. da .; ROCCO, D. D. F. M. . Air pollution reduces breathing capacity during maximum exercise. Research, Society and Development, [S. l.], v. 11, n. 15, p. e44111536565, 2022. DOI: 10.33448/rsd-v11i15.36565. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36565. Acesso em: 27 dec. 2024.

Issue

Section

Health Sciences