Pesticides and bacterial density - analysis of a dam situated in agricultural area
DOI:
https://doi.org/10.33448/rsd-v11i16.37870Keywords:
Endrin; Lambda cyhalothrin; Endosulfan sulphate.Abstract
The present study aimed to detect the types and concentration of pesticides in the surface water of a dam located in an agricultural region, and relate them to aquatic bacterial density. 1L of water were collected six times, three in the dry season (D1, D2 and D3) and three in the rainy season (R1, R2 and R3). The pesticide analysis was performed using CG/MS. The bacterial density was analyzed by means of CFU counting. The most abundant colonies that were cultivated in all studied samples were isolated and identified by molecular methods. The bacterial density had a significant difference between the rainy and dry seasons. In the dry season, the average bacterial density (5.69x105±2.86 x105 UFC mL-1) was higher than in the rainy season (2.31x105±1.73 x105 UFC mL-1). In the dry season, lambda cyhalothrin (0.3 µg L -1) and endrin (0.23 µg L -1) were found in D1 collection and endosulfan sulfate in D1 and D2 (0.05 - 0.27 µg L -1). In the rainy season, DEA (0.02 - 0.09 µg L-1) and atrazine (0.02 - 0.06 µg L -1) were detected in all collections, metalachlor (0.2 µg L -1), chlorpyrifos (0.2 µg L -1) in R1 and R2 and endosulfan sulfate (0.1 µg L -1) in R1. In the dry season, the bacterial density in R1 was significantly lower than R2 and R3. High correlation among those pesticides and the bacterial density was observed. Endrin, lambda cyhalothrin and endosulfan sulphate are toxic and persistent pesticides, and may therefore have influenced the decrease in aquatic bacterial density. Molecular analyzes identified the bacterium Bacillus weihenstephanensis, known to be present in environments contaminated by pesticides and for its biodegradable potential.
References
Aburjaile, F.F., Santana, M.P., Viana, M.V.C., Silva, W.M., Folador, E. L., Silva, A., & Azevedo, V. (2015) Genomics. In: A Textbook of Biotechnology (Zahoorullah, S. ed.). SM Online Publishers LLC, Dover, DE, USA.
Adewoyin, M.A., & Okoh, A.I. (2020) Seasonal Shift in Physicochemical Factors Revealed the Ecological Variables that Modulate the Density of Acinetobacter Species in Freshwater Resources. International Journal of Environmental Research and Public Health, 17(10):3606-3624. 10.3390/ijerph17103606
Albuquerque, A.F., Ribeiro, J.S., Kummrow, F., Nogueira, A.J.A., Montagner, C.C., & Umbuzeiro, G.A. (2016) Pesticides in Brazilian freshwaters: a critical review. Environmental Science: Processes & Impacts, 18(7):779–787. 10.1039/c6em00268d
Alonso-Trujillo, M., Muñiz-González, A.B., & Martínez-Guitarte, J.L. (2020) Endosulfan exposure alters transcription of genes involved in the detoxification and stress responses in Physella acuta. Scientific Reports, 10(1):1-9. 10.1038/s41598-020-64554-8
Armas, E.D., Monteiro, R.T.R., Antunes, P.M., Santos, M.A.P.F., Camargo, P.B., & Abakerli, R.B. (2007) Diagnóstico espaço-temporal da ocorrência de herbicidas nas águas superficiais e sedimentos do Rio Corumbataí e principais afluentes. Química Nova, 30(5):1119–1127. 10.1590/s0100-40422007000500013
Baćmaga, M., Kucharski, J., & Wyszkowska, J. (2015) Microbial and enzymatic activity of soil contaminated with azoxystrobin. Environmental Monitoring and Assessment, 187(10):165-170. 10.1007/s10661-015-4827-5
Baćmaga, M, Wyszkowska, J., & Kucharski, J.. (2016) Bioaugmentation of Soil Contaminated with Azoxystrobin. Water, Air, & Soil Pollution, 228(1). 10.1007/s11270-016-3200-9
Braga, J.K., Hardoim, E.L., Dores, E.F.G.C., & Hechman, C.W. (2014) Pesticide Influence on the Desmid Flora of a Reservoir in an Agricultural Region at Campo Verde, Mato Grosso, Brazil. Journal of Environmental Protection, 5:1116-1125 10.4236/jep.2014.512110
Capkin, E., Altinok, I., & Karahan, S. (2006) Water quality and fish size affect toxicity of endosulfan, an organochlorine pesticide, to rainbow trout. Chemosphere, 64(10):1793–1800. 10.1016/j.chemosphere.2005.12.050
Carriger, J.F., Hoang, T.C., Rand, G.M., Gardinali, P.R., & Castro, J. (2010) Acute Toxicity and Effects Analysis of Endosulfan Sulfate to Freshwater Fish Species. Archives of Environmental Contamination and Toxicology, 60(2):281–289. 10.1007/s00244-010-9623-1
DeLorenzo, M.E., Scott, G.I., & Ross, P.E. (2001) Toxicity of pesticides to aquatic microorganisms: A review. Environmental Toxicology and Chemistry, 20(1): 84–98. 10.1002/etc.5620200108
Fabiano, M.Z., Forato, L.A., Assis, O.B.G., & Bernardo-Filho, R. (2017) Incidence and identification of bacteria in spots of exposition and commercialization of fruits and vegetables: a case study. Brazilian Journal of Biosystems Engineering, 11(2):164-171, http://dx.doi.org/10.18011/bioeng2017v11n2p164-171
Gomes, M. A. F., Souza, M. D. de., Boeira, R. C., & Toledo, L. G. de. (2000). Nutrientes vegetais no meio ambiente: ciclos bioquímicos, fertilizantes e corretivos. Jaguariúna: Embrapa Meio Ambiente, 50 p.
Guida, Y.S., Meire, R.O., Torres, J.P.M., & Malm, O. (2018) Air contamination by legacy and current-use pesticides in Brazilian mountains: An overview of national regulations by monitoring pollutant presence in pristine areas. Environmental Pollution, 242:19–30. 10.1016/j.envpol.2018.06.061
Hansen, D.J., Schimmel, S.C., & Forester, J. (1977) Endrin: Effects on the entire life cycle of a saltwater fish Cyprinodon variegatus. Journal of Toxicology and Environmental Health, 3(4):721–733. 10.1080/15287397709529607
Hoagland, K.D., Drenner, R.W., Smith, J.D., & Cross, D.R. (2009) Freshwater community responses to mixtures of agricultural pesticides: Effects of atrazine and bifenthrin. Environmental Toxicology and Chemistry, 12(4):627–637. 10.1002/etc.5620120404
Jones, D.K., Hammond, J.I., & Relyea, R.A. (2009) Very highly toxic effects of endosulfan across nine species of tadpoles: lag effects and family-level sensitivity. Environmental Toxicology and Chemistry, 28(9):1939-1945. 10.1897/09-033.1
Kataoka, R., & Takagi, K. (2013) Biodegradability and biodegradation pathways of endosulfan and endosulfan sulfate. Applied Microbiology and Biotechnology, 97(8):3285–3292. 10.1007/s00253-013-4774-4
Leonard, A.W., Hyne, R.V., Lim, R.P., Leigh, K.A., Le, J., & Beckett, R. (2001) Fate and Toxicity of Endosulfan in Namoi River Water and Bottom Sediment. Journal of Environment Quality, 30(3):750-759. 10.2134/jeq2001.303750x
Lofrano, G., Libralato, G., Meric, S., Vaiano, V., Sacco, O., Venditto, V., Guida, M., & Carotenut, M. (2020) Occurrence and potential risks of emerging contaminants in water Sacco O, Vaiano V. (Eds.), Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants, Elsevier. p. 1-25. https://doi.org/10.1016/B978-0-12-818334-2.00001-8
Matsumoto, E., Kawanaka, Y., Yun, S.J., & Oyaizu, H. (2009) Bioremediation of the organochlorine pesticides, dieldrin and endrin, and their occurrence in the environment. Applied Microbiology and Biotechnology, 84(2):205–216. 10.1007/s00253-009-2094-5 32.
Mauffret, A., Baran, N., & Joulian, C. (2017) Effect of pesticides and metabolites on groundwater bacterial community. Science of The Total Environment, 576:879–887. 10.1016/j.scitotenv.2016.10.108
Mohammed, S., Lamoree, M., Ansa-Asare, O.D., & Boer, J. (2019) Review of the analysis of insecticide residues and their levels in different matrices in Ghana. Ecotoxicology and Environmental Safety, 171:261-372. 10.1016/j.ecoenv.2018.12.049
Muazzam, B., Munawar, K., Khan, I.A., Jahan, S., Iqbal, M., Asi, M.R., & Zafar, M.I. (2019). Stress response and toxicity studies on zebrafish exposed to endosulfan and imidacloprid present in water. Journal of Water Supply: Research and Technology-Aqua,. 68 (8):718–730. 10.2166/aqua.2019.077
Muturi, E.J., Donthu, R.K., Fields, C.J., Moise, I.K., & Kim, C.H. (2017) Effect of pesticides on microbial communities in container aquatic habitats. Scientific Reports, 7(1):1-10. 10.1038/srep44565
Nebeker, A.V., Schuytema, G.S., Griffis, W.L., Barbitta, J.A., & Carey, L.A. (1989). Effect of sediment organic carbon on survival ofhyalella aztecaexposed to DDT and endrin. Environmental Toxicology and Chemistry, 8(8):705–718. 10.1002/etc.5620080808
Neder, R.N.M. (1992) Microbiologia: Manual de laboratório. Nobel, São Paulo.
Nogueira, E.N., Dores, E.F.G.C., Pinto, A.A., Amorim, R.R.R., Ribeiro, M.L., & Lourencetti, C. (2012) Currently used pesticides in water matrices in Central-Western Brazil. Journal of the Brazilian Chemical Society, 23(8), 1476-1487. 10.1590/S0103-50532012005000008
Nordin, I.L., Ibrahim, N., Ahmad, S.A., Hamidin, N., Dahalan, F.A., Shukor, M.Y.A. (2018) Endosulfan Toxicity to Anabas testudineus and Histopathological Changes on Vital Organs. E3S Web of Conferences, 34:1- 9. 10.1051/e3sconf/20183402055
Oliveira, A.S., Honórioa, L., Matosa, M.L., & De-Souza, J.B.G. (2020) Desenvolvimento de metodologias analíticas para determinação de clorpirifós em amostras aquosas empregando a microextração líquido-líquido dispersiva seguida por HPLC-UV. Química Nova, XY(00), 1-7. 10.21577/0100-4042.20170453
Onwona-Kwakye, M., Plants-Paris, K., Keita, K., Lee, J., Brink, P.J.V., Hogarh, J.N., & Darkoh, C. (2020) Pesticides Decrease Bacterial Diversity and Abundance of Irrigated Rice Fields. Microorganisms, 8(3): 318-335. 10.3390/microorganisms8030318
Pereira, J.L., Picanço, M.C., Silva, A.A., Santos, E.A., Tomé, H.V.V., & Olarte, J.B. (2008) Effects of glyphosate and endosulfan on soil microorganisms in soybean crop. Planta Daninha, 26(4):825–830. 10.1590/s0100-83582008000400014
Pham, C.H., Min, J., & Gu, M.B. (2004) Pesticide Induced Toxicity and Stress Response in Bacterial Cells. Bulletin of Environmental Contamination and Toxicology, 72(2):380–386. 10.1007/s00128-003-8845-6
Pignati, W.A., Lima, F.A.N., Lara, S.S., Correa, M.L.M., Barbosa, J.R., Leão, L.H.C., & Pignatti, M.G. (2017) Distribuição espacial do uso de agrotóxicos no Brasil: uma ferramenta para a Vigilância em Saúde. Ciência & Saúde Coletiva, 22(10):3281–3293. 10.1590/1413- 812320172210.17742017
Procópio, S.O., Silva, A.A., Ferreira, L.R., Miranda, G.V., Santos, J.B., & Araújo, G.A.A. (2001) S-Metolachlor Efficiency in Brachiaria plantaginea Control in Bean Crop Under Two Irrigation Management. Planta Daninha, 19(3):427-433. 10.1590/S0100-83582001000300016
Rebelo, R.M., Vasconcelos, R.A., Buys, B.D.M.C., Rezende, J.A., Moraes, K.O.C., & Oliveira, R.P. (2010) Pesticides and Related Commercialized in Brazil in 2009. An Environmental Approach; IBAMA Press, Brasilia, Brazil.
Riaz, G., Tabinda, A.B., Kashif, M., Yasar, A., Mahmood, A., Rasheed, R., & Mahfooz, Y. (2018) Monitoring and spatiotemporal variations of pyrethroid insecticides in surface water, sediment, and fish of the river Chenab Pakistan. Environmental Science and Pollution Research, 25(23):22584–22597. 10.1007/s11356-018-1963-9
Rigotto, R.M., Vasconcelos, D.P., & Rocha, M.M. (2014) Pesticide use in Brazil and problems for public health. Cadernos de Saúde Pública, 30(7):1360–1362. 10.1590/0102-311xpe020714
Rosic, N., Bradbury, J., Lee, M., Baltrotsky, K., & Grace, S. (2020) The impact of pesticides on local waterways: A scoping review and method for identifying pesticides in local usage. Environmental Science & Policy, 106:12 21. 10.1016/j.envsci.2019.12.005
Scorza-Júnior, R.P., Franco, A.A., & Moraes, L.C.K. (2013) Persistência de endossulfam e seu metabólito sulfato de endossulfam em condições de campo e laboratório. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(7):756–762. 10.1590/S1415-43662013000700010
Senoro, D.B., Maravillas, S.L., Ghafari, N., Rivera, C.C., Quiambao, E.C., & Lorenzo, M.C.M. (2016) Modeling of the residue transport of lambda cyhalothrin, cypermethrin, malathion and endosulfan in three different environmental compartments in the Philippines. Sustainable Environment Research, 26(4):168 –176. 10.1016/j.serj.2016.04.010
Shetti A. A., & Kaliwal B. B. (2016). “Effect of imidacloprid on bacterial soil isolate Bacillus weihenstephanensis,” in Insecticide Resistance, ed. Trdan S. (London: IntechOpen Limited; ), 275–294, 10.5772/61503
Staley, Z.R., Harwood, V.J., & Rohr, J.R. (2015) A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Critical Reviews in Toxicology, 45(10):813–836. 10.3109/10408444.2015.1065471
Stolp, H. (1988) Microbial Ecology: Organisms, Habitats, Activities. Cambridge University Press, Cambridge.
Umar, A.F., Tahir, F., Larkin, M.J., Oyawoye, O.M., Musa, B.L., Yerima, M.B., & Agbo, E.B. (2012) AtzABC Catabolic Gene Probe from Novel Atrazine-Degrading Rhodococcus Strain Isolated from a Nigerian Agricultural Soil. Advances in Microbiology, 2(4):93-597. 10.4236/aim.2012.24077.
Velisek, J., Stara, A., Machova, J., & Svobodova, Z. (2012) Effects of long-term exposure to simazine in real concentrations on common carp (Cyprinuscarpio L.). Ecology and Environmental Safety, 76(2):79-86. 10.1016/j.ecoenv.2011.10.013
Yadav, H., Kumar, R., & Singh, S.M. (2020) Residues of Pesticides and Heavy Metals in Crops Resulting in Toxic Effects on Living Organism. Journal of Seybold Report, 15(7):1527-1540. 10.13140/RG.2.2.24806.65609
You, J., Schuler, L.J., & Lydy, M.J. (2004) Acute Toxicity of Sediment-Sorbed Endrin, Methoxychlor, and Endosulfan to Hyalella azteca and Chironomus tentans. Bulletin of Environmental Contamination and Toxicology, 73(3):457-464. 10.1007/s00128-004-0451-8
Xiao, P., & Kondo, R. (2019) Biodegradation and bioconversion of endrin by white rot fungi, Phlebia acanthocystis and Phlebia brevispora. Mycoscience, 60(4):255–261. 10.1016/j.myc.2019.04.004
Wu, J., & Smith, M.T. (2015) Lethal Effects of Lambda-Cyhalothrin and its Commercial Formulation on Asian Longhorned Beetle (Coleoptera: Cerambycidae): Implications for Population Suppression, Tree Protection, Eradication, and Containment. Journal of Economic Entomology, 108(1):150–156. 10.1093/jee/tou052
Zhao, X., Fan, F., Zhou, H., Zhang, P., & Zhao, G. (2018) Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons. Bioprocess and Biosystems Engineering, 41(6):871–883. 10.1007/s00449-018-1921-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Zaryf Dahroug; Juliana K. Braga; Eliana F. G. de C. Dores; Edna L. Hardoim
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.