Plaguicidas y densidad bacteriana - análisis en una represa ubicada en una zona agrícola

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i16.37870

Palabras clave:

Endrín; Lambda cihalotrina; Sulfato de endosulfán.

Resumen

El presente estudio tuvo como objetivo analizar los tipos y concentraciones de pesticidas en el agua superficial de una represa ubicada en una región agrícola, y relacionarlos con la densidad bacteriana acuática. Se recolectaron seis muestras de agua de 1L, tres en época poco lluviosa (D1, D2 y D3) y tres en época lluviosa (R1, R2 y R3). El análisis de pesticidas se realizó usando GC/MS. La densidad bacteriana se analizó utilizando recuentos de UFC. Las colonias más abundantes cultivadas en todas las muestras estudiadas fueron aisladas e identificadas por métodos moleculares. La densidad bacteriana mostró una diferencia significativa entre las estaciones lluviosa y seca. En época poco lluviosa, la densidad bacteriana promedio (5,69x105±2,86 x105 UFC mL-1) fue mayor que en época de lluvias (2,31x105±1,73 x105 UFC mL-1). En época seca se encontró lambda cihalotrina (0.3 µg L-1) y endrina (0.23 µg L-1) en la colecta D1 y endosulfán sulfato en D1 y D2 (0.05 - 0.27 µg L-1). En época de lluvias se detectó DEA (0.02 - 0.09 µg L-1) (0.02 - 0.09 µg L-1) y atrazina (0.02 - 0.06 µg L -1) en todas las colectas, metalacloro (0.2 µg L-1), clorpirifos (0.2 µg L -1) en R1 y R2 y sulfato de endosulfán (0,1 µg L -1) en R1. En la estación seca, la densidad bacteriana en R1 fue significativamente menor que en R2 y R3. Hubo una alta correlación entre estos plaguicidas y la disminución de la densidad bacteriana. La endrina, la lambda cihalotrina y el sulfato de endosulfán son pesticidas tóxicos y persistentes y, por lo tanto, pueden haber influido en la disminución de la densidad bacteriana acuática. Los análisis moleculares identificaron la bacteria Bacillus weihenstephanensis, conocida por estar presente en ambientes contaminados por pesticidas y por su potencial biodegradable.

Citas

Aburjaile, F.F., Santana, M.P., Viana, M.V.C., Silva, W.M., Folador, E. L., Silva, A., & Azevedo, V. (2015) Genomics. In: A Textbook of Biotechnology (Zahoorullah, S. ed.). SM Online Publishers LLC, Dover, DE, USA.

Adewoyin, M.A., & Okoh, A.I. (2020) Seasonal Shift in Physicochemical Factors Revealed the Ecological Variables that Modulate the Density of Acinetobacter Species in Freshwater Resources. International Journal of Environmental Research and Public Health, 17(10):3606-3624. 10.3390/ijerph17103606

Albuquerque, A.F., Ribeiro, J.S., Kummrow, F., Nogueira, A.J.A., Montagner, C.C., & Umbuzeiro, G.A. (2016) Pesticides in Brazilian freshwaters: a critical review. Environmental Science: Processes & Impacts, 18(7):779–787. 10.1039/c6em00268d

Alonso-Trujillo, M., Muñiz-González, A.B., & Martínez-Guitarte, J.L. (2020) Endosulfan exposure alters transcription of genes involved in the detoxification and stress responses in Physella acuta. Scientific Reports, 10(1):1-9. 10.1038/s41598-020-64554-8

Armas, E.D., Monteiro, R.T.R., Antunes, P.M., Santos, M.A.P.F., Camargo, P.B., & Abakerli, R.B. (2007) Diagnóstico espaço-temporal da ocorrência de herbicidas nas águas superficiais e sedimentos do Rio Corumbataí e principais afluentes. Química Nova, 30(5):1119–1127. 10.1590/s0100-40422007000500013

Baćmaga, M., Kucharski, J., & Wyszkowska, J. (2015) Microbial and enzymatic activity of soil contaminated with azoxystrobin. Environmental Monitoring and Assessment, 187(10):165-170. 10.1007/s10661-015-4827-5

Baćmaga, M, Wyszkowska, J., & Kucharski, J.. (2016) Bioaugmentation of Soil Contaminated with Azoxystrobin. Water, Air, & Soil Pollution, 228(1). 10.1007/s11270-016-3200-9

Braga, J.K., Hardoim, E.L., Dores, E.F.G.C., & Hechman, C.W. (2014) Pesticide Influence on the Desmid Flora of a Reservoir in an Agricultural Region at Campo Verde, Mato Grosso, Brazil. Journal of Environmental Protection, 5:1116-1125 10.4236/jep.2014.512110

Capkin, E., Altinok, I., & Karahan, S. (2006) Water quality and fish size affect toxicity of endosulfan, an organochlorine pesticide, to rainbow trout. Chemosphere, 64(10):1793–1800. 10.1016/j.chemosphere.2005.12.050

Carriger, J.F., Hoang, T.C., Rand, G.M., Gardinali, P.R., & Castro, J. (2010) Acute Toxicity and Effects Analysis of Endosulfan Sulfate to Freshwater Fish Species. Archives of Environmental Contamination and Toxicology, 60(2):281–289. 10.1007/s00244-010-9623-1

DeLorenzo, M.E., Scott, G.I., & Ross, P.E. (2001) Toxicity of pesticides to aquatic microorganisms: A review. Environmental Toxicology and Chemistry, 20(1): 84–98. 10.1002/etc.5620200108

Fabiano, M.Z., Forato, L.A., Assis, O.B.G., & Bernardo-Filho, R. (2017) Incidence and identification of bacteria in spots of exposition and commercialization of fruits and vegetables: a case study. Brazilian Journal of Biosystems Engineering, 11(2):164-171, http://dx.doi.org/10.18011/bioeng2017v11n2p164-171

Gomes, M. A. F., Souza, M. D. de., Boeira, R. C., & Toledo, L. G. de. (2000). Nutrientes vegetais no meio ambiente: ciclos bioquímicos, fertilizantes e corretivos. Jaguariúna: Embrapa Meio Ambiente, 50 p.

Guida, Y.S., Meire, R.O., Torres, J.P.M., & Malm, O. (2018) Air contamination by legacy and current-use pesticides in Brazilian mountains: An overview of national regulations by monitoring pollutant presence in pristine areas. Environmental Pollution, 242:19–30. 10.1016/j.envpol.2018.06.061

Hansen, D.J., Schimmel, S.C., & Forester, J. (1977) Endrin: Effects on the entire life cycle of a saltwater fish Cyprinodon variegatus. Journal of Toxicology and Environmental Health, 3(4):721–733. 10.1080/15287397709529607

Hoagland, K.D., Drenner, R.W., Smith, J.D., & Cross, D.R. (2009) Freshwater community responses to mixtures of agricultural pesticides: Effects of atrazine and bifenthrin. Environmental Toxicology and Chemistry, 12(4):627–637. 10.1002/etc.5620120404

Jones, D.K., Hammond, J.I., & Relyea, R.A. (2009) Very highly toxic effects of endosulfan across nine species of tadpoles: lag effects and family-level sensitivity. Environmental Toxicology and Chemistry, 28(9):1939-1945. 10.1897/09-033.1

Kataoka, R., & Takagi, K. (2013) Biodegradability and biodegradation pathways of endosulfan and endosulfan sulfate. Applied Microbiology and Biotechnology, 97(8):3285–3292. 10.1007/s00253-013-4774-4

Leonard, A.W., Hyne, R.V., Lim, R.P., Leigh, K.A., Le, J., & Beckett, R. (2001) Fate and Toxicity of Endosulfan in Namoi River Water and Bottom Sediment. Journal of Environment Quality, 30(3):750-759. 10.2134/jeq2001.303750x

Lofrano, G., Libralato, G., Meric, S., Vaiano, V., Sacco, O., Venditto, V., Guida, M., & Carotenut, M. (2020) Occurrence and potential risks of emerging contaminants in water Sacco O, Vaiano V. (Eds.), Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants, Elsevier. p. 1-25. https://doi.org/10.1016/B978-0-12-818334-2.00001-8

Matsumoto, E., Kawanaka, Y., Yun, S.J., & Oyaizu, H. (2009) Bioremediation of the organochlorine pesticides, dieldrin and endrin, and their occurrence in the environment. Applied Microbiology and Biotechnology, 84(2):205–216. 10.1007/s00253-009-2094-5 32.

Mauffret, A., Baran, N., & Joulian, C. (2017) Effect of pesticides and metabolites on groundwater bacterial community. Science of The Total Environment, 576:879–887. 10.1016/j.scitotenv.2016.10.108

Mohammed, S., Lamoree, M., Ansa-Asare, O.D., & Boer, J. (2019) Review of the analysis of insecticide residues and their levels in different matrices in Ghana. Ecotoxicology and Environmental Safety, 171:261-372. 10.1016/j.ecoenv.2018.12.049

Muazzam, B., Munawar, K., Khan, I.A., Jahan, S., Iqbal, M., Asi, M.R., & Zafar, M.I. (2019). Stress response and toxicity studies on zebrafish exposed to endosulfan and imidacloprid present in water. Journal of Water Supply: Research and Technology-Aqua,. 68 (8):718–730. 10.2166/aqua.2019.077

Muturi, E.J., Donthu, R.K., Fields, C.J., Moise, I.K., & Kim, C.H. (2017) Effect of pesticides on microbial communities in container aquatic habitats. Scientific Reports, 7(1):1-10. 10.1038/srep44565

Nebeker, A.V., Schuytema, G.S., Griffis, W.L., Barbitta, J.A., & Carey, L.A. (1989). Effect of sediment organic carbon on survival ofhyalella aztecaexposed to DDT and endrin. Environmental Toxicology and Chemistry, 8(8):705–718. 10.1002/etc.5620080808

Neder, R.N.M. (1992) Microbiologia: Manual de laboratório. Nobel, São Paulo.

Nogueira, E.N., Dores, E.F.G.C., Pinto, A.A., Amorim, R.R.R., Ribeiro, M.L., & Lourencetti, C. (2012) Currently used pesticides in water matrices in Central-Western Brazil. Journal of the Brazilian Chemical Society, 23(8), 1476-1487. 10.1590/S0103-50532012005000008

Nordin, I.L., Ibrahim, N., Ahmad, S.A., Hamidin, N., Dahalan, F.A., Shukor, M.Y.A. (2018) Endosulfan Toxicity to Anabas testudineus and Histopathological Changes on Vital Organs. E3S Web of Conferences, 34:1- 9. 10.1051/e3sconf/20183402055

Oliveira, A.S., Honórioa, L., Matosa, M.L., & De-Souza, J.B.G. (2020) Desenvolvimento de metodologias analíticas para determinação de clorpirifós em amostras aquosas empregando a microextração líquido-líquido dispersiva seguida por HPLC-UV. Química Nova, XY(00), 1-7. 10.21577/0100-4042.20170453

Onwona-Kwakye, M., Plants-Paris, K., Keita, K., Lee, J., Brink, P.J.V., Hogarh, J.N., & Darkoh, C. (2020) Pesticides Decrease Bacterial Diversity and Abundance of Irrigated Rice Fields. Microorganisms, 8(3): 318-335. 10.3390/microorganisms8030318

Pereira, J.L., Picanço, M.C., Silva, A.A., Santos, E.A., Tomé, H.V.V., & Olarte, J.B. (2008) Effects of glyphosate and endosulfan on soil microorganisms in soybean crop. Planta Daninha, 26(4):825–830. 10.1590/s0100-83582008000400014

Pham, C.H., Min, J., & Gu, M.B. (2004) Pesticide Induced Toxicity and Stress Response in Bacterial Cells. Bulletin of Environmental Contamination and Toxicology, 72(2):380–386. 10.1007/s00128-003-8845-6

Pignati, W.A., Lima, F.A.N., Lara, S.S., Correa, M.L.M., Barbosa, J.R., Leão, L.H.C., & Pignatti, M.G. (2017) Distribuição espacial do uso de agrotóxicos no Brasil: uma ferramenta para a Vigilância em Saúde. Ciência & Saúde Coletiva, 22(10):3281–3293. 10.1590/1413- 812320172210.17742017

Procópio, S.O., Silva, A.A., Ferreira, L.R., Miranda, G.V., Santos, J.B., & Araújo, G.A.A. (2001) S-Metolachlor Efficiency in Brachiaria plantaginea Control in Bean Crop Under Two Irrigation Management. Planta Daninha, 19(3):427-433. 10.1590/S0100-83582001000300016

Rebelo, R.M., Vasconcelos, R.A., Buys, B.D.M.C., Rezende, J.A., Moraes, K.O.C., & Oliveira, R.P. (2010) Pesticides and Related Commercialized in Brazil in 2009. An Environmental Approach; IBAMA Press, Brasilia, Brazil.

Riaz, G., Tabinda, A.B., Kashif, M., Yasar, A., Mahmood, A., Rasheed, R., & Mahfooz, Y. (2018) Monitoring and spatiotemporal variations of pyrethroid insecticides in surface water, sediment, and fish of the river Chenab Pakistan. Environmental Science and Pollution Research, 25(23):22584–22597. 10.1007/s11356-018-1963-9

Rigotto, R.M., Vasconcelos, D.P., & Rocha, M.M. (2014) Pesticide use in Brazil and problems for public health. Cadernos de Saúde Pública, 30(7):1360–1362. 10.1590/0102-311xpe020714

Rosic, N., Bradbury, J., Lee, M., Baltrotsky, K., & Grace, S. (2020) The impact of pesticides on local waterways: A scoping review and method for identifying pesticides in local usage. Environmental Science & Policy, 106:12 21. 10.1016/j.envsci.2019.12.005

Scorza-Júnior, R.P., Franco, A.A., & Moraes, L.C.K. (2013) Persistência de endossulfam e seu metabólito sulfato de endossulfam em condições de campo e laboratório. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(7):756–762. 10.1590/S1415-43662013000700010

Senoro, D.B., Maravillas, S.L., Ghafari, N., Rivera, C.C., Quiambao, E.C., & Lorenzo, M.C.M. (2016) Modeling of the residue transport of lambda cyhalothrin, cypermethrin, malathion and endosulfan in three different environmental compartments in the Philippines. Sustainable Environment Research, 26(4):168 –176. 10.1016/j.serj.2016.04.010

Shetti A. A., & Kaliwal B. B. (2016). “Effect of imidacloprid on bacterial soil isolate Bacillus weihenstephanensis,” in Insecticide Resistance, ed. Trdan S. (London: IntechOpen Limited; ), 275–294, 10.5772/61503

Staley, Z.R., Harwood, V.J., & Rohr, J.R. (2015) A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Critical Reviews in Toxicology, 45(10):813–836. 10.3109/10408444.2015.1065471

Stolp, H. (1988) Microbial Ecology: Organisms, Habitats, Activities. Cambridge University Press, Cambridge.

Umar, A.F., Tahir, F., Larkin, M.J., Oyawoye, O.M., Musa, B.L., Yerima, M.B., & Agbo, E.B. (2012) AtzABC Catabolic Gene Probe from Novel Atrazine-Degrading Rhodococcus Strain Isolated from a Nigerian Agricultural Soil. Advances in Microbiology, 2(4):93-597. 10.4236/aim.2012.24077.

Velisek, J., Stara, A., Machova, J., & Svobodova, Z. (2012) Effects of long-term exposure to simazine in real concentrations on common carp (Cyprinuscarpio L.). Ecology and Environmental Safety, 76(2):79-86. 10.1016/j.ecoenv.2011.10.013

Yadav, H., Kumar, R., & Singh, S.M. (2020) Residues of Pesticides and Heavy Metals in Crops Resulting in Toxic Effects on Living Organism. Journal of Seybold Report, 15(7):1527-1540. 10.13140/RG.2.2.24806.65609

You, J., Schuler, L.J., & Lydy, M.J. (2004) Acute Toxicity of Sediment-Sorbed Endrin, Methoxychlor, and Endosulfan to Hyalella azteca and Chironomus tentans. Bulletin of Environmental Contamination and Toxicology, 73(3):457-464. 10.1007/s00128-004-0451-8

Xiao, P., & Kondo, R. (2019) Biodegradation and bioconversion of endrin by white rot fungi, Phlebia acanthocystis and Phlebia brevispora. Mycoscience, 60(4):255–261. 10.1016/j.myc.2019.04.004

Wu, J., & Smith, M.T. (2015) Lethal Effects of Lambda-Cyhalothrin and its Commercial Formulation on Asian Longhorned Beetle (Coleoptera: Cerambycidae): Implications for Population Suppression, Tree Protection, Eradication, and Containment. Journal of Economic Entomology, 108(1):150–156. 10.1093/jee/tou052

Zhao, X., Fan, F., Zhou, H., Zhang, P., & Zhao, G. (2018) Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons. Bioprocess and Biosystems Engineering, 41(6):871–883. 10.1007/s00449-018-1921-4

Descargas

Publicado

16/12/2022

Cómo citar

DAHROUG, Z.; BRAGA, J. K.; DORES, E. F. G. de C. .; HARDOIM, E. L. Plaguicidas y densidad bacteriana - análisis en una represa ubicada en una zona agrícola. Research, Society and Development, [S. l.], v. 11, n. 16, p. e527111637870, 2022. DOI: 10.33448/rsd-v11i16.37870. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37870. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas