Chemical characterization, antimicrobial activity and cardiac effects in rat heart of the ethyl acetate fraction of Syzygium cumini (L.) Skeels

Authors

DOI:

https://doi.org/10.33448/rsd-v12i2.40000

Keywords:

Jambolão; Phenolic compounds; Antimicrobial; Cardiac contraction.

Abstract

Plants are important sources of secondary metabolites responsible for various biological activities. In this research, was evaluated the effect action ethyl acetate fraction of Syzygium cumini leaves (Sc-AcOEt) in the antimicrobial activity, contractile and electrical effects in isolated rat hearts and the chemical characterization. Antimicrobial activity was assessed using the disk-diffusion method and the determination of the minimum inhibitory concentration. The contractile and electrical effects were tested using the Langendorf method. The chemical characterization was evaluated through quantification and HPLC analyzes. P. aeruginosa was not viable in any concentration of the fraction (MIC 0,125 mg/mL), while S. aureus showed a MIC of 0.5 mg/mL. K. pneumoniae and E. coli had the highest MIC (1 mg/mL). A reduction in LVDP was observed after heart perfusion with 0.1 mg/mL of Sc-AcOEt. No change was observed in the duration of systole and diastole at all concentrations and in the electrocardiographic parameters. Total phenols, total flavonoids and total flavonols contents of Sc-AcOEt, calculated from the respective calibration curves, were 21.556µg/mg AGE, 617.222µg/mg QE and 315,222µg/mg RE, respectively. In addition, the HPLC analysis of Sc-AcOEt showed the presence of gallic acid, quercetin-3-glucoside, naringin and myricetin as main components. Thus, the Sc-AcOEt has important antimicrobial and cardiac activities possibly due to its chemical constituents.

References

Bacha, N. C., Levy, M., Guerin, C. L., Le Bonniec, B., Harroche, A., Szezepanski, I., Renard, J. M., Gaussem, P., Israel-Biet, D., Boulanger, C. M., & Smadja, D. M. (2019). Treprostinil treatment decreases circulating platelet microvesicles and their procoagulant activity in pediatric pulmonary hypertension. Pediatric Pulmonology, 54(1), 66–72. https://doi.org/10.1002/ppul.24190

Batiha, G. E. S., Alkazmi, L. M., Wasef, L. G., Beshbishy, A. M., Nadwa, E. H., & Rashwan, E. K. (2020). Syzygium aromaticum l. (myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules, 10(2), 1–16. https://doi.org/10.3390/biom10020202

Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493

Beshbishy, A. M., El-Saber Batiha, G., Adeyemi, O. S., Yokoyama, N., & Igarashi, I. (2019). Inhibitory effects of methanolic Olea europaea and acetonic Acacia laeta on growth of Babesia and Theileria. Asian Pacific Journal of Tropical Medicine, 12(9), 425–434. https://doi.org/10.4103/1995-7645.267586

Chen, W. J., Cheng, Y., Li, W., Dong, X. K., Wei, J. L., Yang, C. H., & Jiang, Y. H. (2021). Quercetin Attenuates Cardiac Hypertrophy by Inhibiting Mitochondrial Dysfunction Through SIRT3/PARP-1 Pathway. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.739615

Chhikara, N., Kaur, R., Jaglan, S., Sharma, P., Gat, Y., & Panghal, A. (2018). Bioactive compounds and pharmacological and food applications of: Syzygium cumini-a review. Food and Function, 9(12), 6096–6115. https://doi.org/10.1039/c8fo00654g

CLSI. (2015). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition. CLSI Document M07-A10, 35. www.clsi.org.

Han, X., & Parker, T. L. (2017). Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts. Pharmaceutical Biology, 55(1), 1619–1622. https://doi.org/10.1080/13880209.2017.1314513

Hörner, M., Giglio, V. F., Dos Santos, A. J. R. W. A., Westphalen, A. B., Iglesias, B. A., Martins, P. R., Do Amaral, C. H., Michelot, T. M., Reetz, L. G. B., Bertoncheli, C. D. M., Paraginski, G. L., & Horner, R. (2008). Triazenos e atividade antibacteriana. Revista Brasileira de Ciencias Farmaceuticas/Brazilian Journal of Pharmaceutical Sciences, 44(3), 441–449. https://doi.org/10.1590/S1516-93322008000300014

Iwashina, T. (2013). Flavonoid properties of five families newly incorporated into the order caryophyllales (Review). Bull Natl Mus Nat Sci, 39(1), 25–51.

Jin, L., Sun, S., Ryu, Y., Piao, Z. H., Liu, B., Choi, S. Y., Kim, G. R., Kim, H. S., Kee, H. J., & Jeong, M. H. (2018). Gallic acid improves cardiac dysfunction and fibrosis in pressure overload-induced heart failure. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-27599-4

Kondratiuk, V. E., & Synytsia, Y. P. (2018). Effect of quercetin on the echocardiographic parameters of left ventricular diastolic function in patients with gout and essential hypertension. Wiadomosci Lekarskie, 71(8), 1554–1559.

Kumar, V., Sharma, N., Sourirajan, A., Khosla, P. K., & Dev, K. (2018). Comparative evaluation of antimicrobial and antioxidant potential of ethanolic extract and its fractions of bark and leaves of Terminalia arjuna from north-western Himalayas, India. Journal of Traditional and Complementary Medicine, 8(1), 100–106. https://doi.org/10.1016/j.jtcme.2017.04.002

Kumaran, A., & Karunakaran, R. J. (2007). In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT, 40(2), 344–352. https://doi.org/10.1016/j.lwt.2005.09.011

Li, L., Mangali, S., Kour, N., Dasari, D., Ghatage, T., Sharma, V., Dhar, A., & Bhat, A. (2021). Syzygium cumini (jamun) fruit-extracted phytochemicals exert anti-proliferative effect on ovarian cancer cells. Journal of Cancer Research and Therapeutics, 17(6), 1547–1551. https://doi.org/10.4103/jcrt.JCRT-210-20

Liao, H. H., Zhang, N., Meng, Y. Y., Feng, H., Yang, J. J., Li, W. J., Chen, S., Wu, H. M., Deng, W., & Tang, Q. Z. (2019). Myricetin Alleviates Pathological Cardiac Hypertrophy via TRAF6/TAK1/MAPK and Nrf2 Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2019. https://doi.org/10.1155/2019/6304058

Mbaebie, B. O., Edeoga, H. O., & Afolayan, A. J. (2012). Phytochemical analysis and antioxidants activities of aqueous stem bark extract of Schotia latifolia Jacq. Asian Pacific Journal of Tropical Biomedicine, 2(2), 118–124. https://doi.org/10.1016/S2221-1691(11)60204-9

Monteiro, F. de S., Carvalho, A. F. S., Marques, E. de C., Ribeiro, R. M., Borges, A. C. R., & Borges, M. O. da R. (2018). Antidiarrhoeal and antispasmodic activity of leaves of Syzygium cumini L. (Myrtaceae) mediated through calcium channel blockage. African Journal of Pharmacy and Pharmacology, 12(1), 11–18. https://doi.org/10.5897/ajpp2017.4868

Nahid, S., Mazumder, K., Rahman, Z., Islam, S., Rashid, M. H., & Kerr, P. G. (2017). Cardio- and hepato-protective potential of methanolic extract of Syzygium cumini (L.) Skeels seeds: A diabetic rat model study. Asian Pacific Journal of Tropical Biomedicine, 7(2), 126–133. https://doi.org/10.1016/j.apjtb.2016.11.025

Nijveldt, R. J., Van Nood, E., Van Hoorn, D. E. C., Boelens, P. G., Van Norren, K., & Van Leeuwen, P. A. M. (2001). Flavonoids: A review of probable mechanisms of action and potential applications. American Journal of Clinical Nutrition, 74(4), 418–425. https://doi.org/10.1093/ajcn/74.4.418

Palomino, J. C., Martin, A., Camacho, M., Guerra, H., Swings, J., & Portaels, F. (2002). Resazurin microtiter assay plate: Simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 46(8), 2720–2722. https://doi.org/10.1128/AAC.46.8.2720-2722.2002

Park, J. H., Ku, H. J., Kim, J. K., Park, J. W., & Lee, J. H. (2018). Amelioration of high fructose-induced cardiac hypertrophy by naringin. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-27788-1

Pastore, C. A., Pinho, J. A., Pinho, C., Samesima, N., Pereira-Filho, H. G., Kruse, J. C. L., Paixão, A., Pérez-Riera, A. R., Ribeiro, A. L., de Oliveira, C. A. R., Gomes, C. I. G., Kaiser, E., Galvão, F., Darrieux, F. C. d. C., França, F. F. A. C., Feitosa-Filho, G., Germiniani, H., Aziz, J. L., Leal, M. G., & Atanes, S. M. (2016). III Diretrizes da Sociedade Brasileira de Cardiologia sobre Análise e Emissão de Laudos Eletrocardiográficos. Arquivos Brasileiros de Cardiologia, 106(4), 1–23. https://doi.org/10.5935/abc.20160054

Qamar, M., Akhtar, S., Ismail, T., Wahid, M., Abbas, M. W., Mubarak, M. S., Yuan, Y., Barnard, R. T., Ziora, Z. M., & Esatbeyoglu, T. (2022). Phytochemical Profile, Biological Properties, and Food Applications of the Medicinal Plant Syzygium cumini. Foods, 11(3), 357–378. https://doi.org/10.3390/foods11030378

Qamar, M., Akhtar, S., Ismail, T., Wahid, M., Ali, S., Nazir, Y., Murtaza, S., Abbas, M. W., & Ziora, Z. M. (2022). Syzygium cumini (L.) Skeels extracts; in vivo anti-nociceptive, anti-inflammatory, acute and subacute toxicity assessment. Journal of Ethnopharmacology, 287. https://doi.org/10.1016/j.jep.2021.114919

Qiu, Y., Cong, N., Liang, M., Wang, Y., & Wang, J. (2017). Systems Pharmacology Dissection of the Protective Effect of Myricetin Against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart. Cardiovascular Toxicology, 17(3), 277–286. https://doi.org/10.1007/s12012-016-9382-y

Ribeiro, L. F., Ribani, R. H., Stafussa, A. P., Makara, C. N., Branco, I. G., Maciel, G. M., & Haminiuk, C. W. I. (2021). Exploratory analysis of bioactive compounds and antioxidant potential of grape (Vitis vinifera) pomace. Acta Scientiarum - Technology, 44, 1–11. https://doi.org/10.4025/actascitechnol.v44i1.56934

Ribeiro, R. M., Pinheiro Neto, V. F., Ribeiro, K. S., Vieira, D. A., Abreu, I. C., Silva, S. D. N., Cartágenes, M. D. S. D. S., Freire, S. M. D. F., Borges, A. C. R., & Borges, M. O. D. R. (2014). Antihypertensive effect of syzygium cumini in spontaneously hypertensive Rats. Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/605452

Rose, G. A., Blackburn, H., Gillum, R. F., & Prineas, R. J. (1982). Metodos De Encuesta Sobre Enfermedades Cardiovasculares (2nd ed.). Organizacion Mundial de La Salud. chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://apps.who.int/iris/bitstream/handle/10665/41413/9243400568_spa.pdf

Salih, E. Y. A., Fyhrquist, P., Abdalla, A. M. A., Abdelgadir, A. Y., Kanninen, M., Sipi, M., Luukkanen, O., Fahmi, M. K. M., Elamin, M. H., & Ali, H. A. (2017). LC-MS/MS tandem mass spectrometry for analysis of phenolic compounds and pentacyclic triterpenes in antifungal extracts of Terminalia brownii (Fresen). Antibiotics, 6(4), 1–22. https://doi.org/10.3390/antibiotics6040037

Salim, B. (2017). A Note Study on Antidiabetic Effect of Main Molecules Contained in Clove Using Molecular Modeling Interactions with DPP-4 Enzyme. International Journal of Computational and Theoretical Chemistry, 5(1), 9. https://doi.org/10.11648/j.ijctc.20170501.12

Santos, C. A., Almeida, F. A., Quecán, B. X. V., Pereira, P. A. P., Gandra, K. M. B., Cunha, L. R., & Pinto, U. M. (2020). Bioactive Properties of Syzygium cumini (L.) Skeels Pulp and Seed Phenolic Extracts. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00990

Singh, J. P., Kaur, A., Singh, N., Nim, L., Shevkani, K., Kaur, H., & Arora, D. S. (2016). In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT, 65, 1025–1030. https://doi.org/10.1016/j.lwt.2015.09.038

Sousa, C. M. D. M., Silva, H. R. E., Vieira, G. M., Ayres, M. C. C., Da Costa, C. L. S., Araújo, D. S., Cavalcante, L. C. D., Barros, E. D. S., Araújo, P. B. D. M., Brandão, M. S., & Chaves, M. H. (2007). Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quimica Nova, 30(2), 351–355. https://doi.org/10.1590/S0100-40422007000200021

Stangl, V., Dreger, H., Stangl, K., & Lorenz, M. (2007). Molecular targets of tea polyphenols in the cardiovascular system. Cardiovascular Research, 73(2), 348–358. https://doi.org/10.1016/j.cardiores.2006.08.022

Subramanian, R., Raj, V., Manigandan, K., & Elangovan, N. (2015). Antioxidant activity of hopeaphenol isolated from Shorea roxburghii stem bark extract. Journal of Taibah University for Science, 9(2), 237–244. https://doi.org/10.1016/j.jtusci.2014.11.004

Who. (2020). Hearts: technical package for cardiovascular disease management in primary health care: risk based CVD management (p. 80).

Wu, B., Qi, C., Wang, L., Yang, W., Zhou, D., Wang, M., Dong, Y., Weng, H., Li, C., Hou, X., Long, X., Wang, H., & Chai, T. (2020). Detection of microbial aerosols in hospital wards and molecular identification and dissemination of drug resistance of Escherichia coli. Environment International, 137. https://doi.org/10.1016/j.envint.2020.105479

Wu, D., Kong, Y., Han, C., Chen, J., Hu, L., Jiang, H., & Shen, X. (2008). d-Alanine:d-alanine ligase as a new target for the flavonoids quercetin and apigenin. International Journal of Antimicrobial Agents, 32(5), 421–426. https://doi.org/10.1016/j.ijantimicag.2008.06.010

Zaiter, A., Becker, L., Petit, J., Zimmer, D., Karam, M. C., Baudelaire, É., Scher, J., & Dicko, A. (2016). Antioxidant and antiacetylcholinesterase activities of different granulometric classes of Salix alba (L.) bark powders. Powder Technology, 301, 649–656. https://doi.org/10.1016/j.powtec.2016.07.014

Zhang, N., Feng, H., Liao, H. H., Chen, S., Yang, Z., Deng, W., & Tang, Q. Z. (2018). Myricetin attenuated LPS induced cardiac injury in vivo and in vitro. Phytotherapy Research, 32(3), 459–470. https://doi.org/10.1002/ptr.5989

Downloads

Published

28/01/2023

How to Cite

MOTA, K. O. .; SANTOS, A. M. .; SANTOS, A. S. .; ARAUJO, A. M. de .; SHAN , A. Y. K. V. .; VASCONCELOS, C. M. L. de .; ARAÚJO, B. S. de . Chemical characterization, antimicrobial activity and cardiac effects in rat heart of the ethyl acetate fraction of Syzygium cumini (L.) Skeels . Research, Society and Development, [S. l.], v. 12, n. 2, p. e12612240000, 2023. DOI: 10.33448/rsd-v12i2.40000. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40000. Acesso em: 5 jan. 2025.

Issue

Section

Health Sciences