Automatic reference evapotranspiration data acquisition system coupled to a constant greater table lysimeter

Authors

DOI:

https://doi.org/10.33448/rsd-v12i5.41720

Keywords:

Irrigation; Automation; Management of water resources.

Abstract

Evapotranspiration is a very important agrometeorological element in the agricultural environment for irrigation management. The correct measurement of evapotranspiration is difficult to obtain due to the complexity of its measurement instrumentation and the need for daily monitoring to collect measurements. In view of this scenario, the purpose of this study was to develop an automated system using embedded electronics through the Arduino free hardware platform, for the measurement of reference evapotranspiration using a constant water table lysimeter. The measurements collected with the constant water table lysimeter were obtained experimentally in the second half of 2017. The results obtained from the graphical analysis demonstrate that the system built using embedded electronics through the Arduino platform proved to be reliable for the measurement in the water table lysimeter constant water table on hourly and daily scale.

Author Biographies

Antonio Tadeu Pellison, Universidade Estadual Paulista "Júlio de Mesquita Filho"

Graduated in Electrical Engineering from Universidade Estadual Paulista Júlio de Mesquita Filho (1992), master's degree (2002) and doctorate (2018) both titles in Agronomy (Irrigation and Drainage) from Universidade Estadual Paulista Júlio de Mesquita Filho. He has experience in electrical engineering, working mainly on the following subjects: electronic systems and microcontrollers.

José Rafael Franco, Universidade Estadual Paulista "Júlio de Mesquita Filho"

Computer Technician at SENAC in Botucatu (2015). Technologist in Systems Analysis and Development from the Faculty of Technology of Botucatu (2017). Specialization in Database at UNICESUMAR in Botucatu (2019), Master's Degree in Irrigation and Drainage at the Faculty of Agricultural Sciences (UNESP) in Botucatu (2021) and PhD in Agricultural Engineering at the Faculty of Agricultural Sciences (UNESP) in Botucatu. Has experience in the areas of Telecommunications, Computer Networks, Software Development, Database and Agrometeorological Instrumentation. He served as a Technical Assistant in Informatics during the period from 2015 to 2019.

Giovana Stucchi, Universidade Estadual Paulista "Júlio de Mesquita Filho"

Graduated in Agricultural Engineering from the Faculty of Agricultural Sciences of Vale do Ribeira (FCAVR-UNESP) in 2021. Master's student in Agricultural Engineering from the Faculty of Agricultural Sciences (FCA-UNESP).

Marcus Vinícius Contes Calça, Universidade Estadual Paulista "Júlio de Mesquita Filho"

I have a Technical level in Computer Science at SENAC in Botucatu - SP/BR (2014). Graduated in Systems Analysis and Development from the Faculty of Technology of Botucatu - SP/BR (2017). He has a Masters (2019) and Doctorate (2022) in Energy in Agriculture from the Faculty of Agricultural Sciences (UNESP) of Botucatu - SP/BR. He has experience in Computer Science (Software Engineering, Data Analytics, Artificial Intelligence and Cloud Computing) and Energy in Agriculture (Solar Radiation, Agrometeorology and Sensing). I have professional certifications and knowledge seals from Cisco, Microsoft, Google and Oracle. He is a reviewer of Brazilian journals in the area of ​​Renewable Energy, Climatology and Computer Science. Acts as Professional Training Instructor II by SENAI/Botucatu - SP/BR in the area of ​​Information Technology (IT).

Matheus Rodrigues Raniero, Universidade Estadual Paulista "Júlio de Mesquita Filho"

Graduated in Systems Analysis and Development from the Faculty of Technology of Botucatu (2017). Master's (2020) and studying for a Doctorate in Agronomy in the area of ​​Energy in Agriculture at the Faculty of Agricultural Sciences of UNESP in Botucatu, São Paulo, Brazil. He has experience in Computer Science (Digital Image Processing and Software Engineering) and Energy in Agriculture (Analysis of Climate Measurements, Radiation and Solar Energy and Agrometeorological Instrumentation).

Alexandre Dal Pai, Universidade Estadual Paulista "Júlio de Mesquita Filho"

He holds a degree in Physics from the University of São Paulo (1998), a Master's degree in Agronomy (Energy in Agriculture) from the Paulista State University Júlio de Mesquita Filho (2001) and a PhD in Agronomy (Energy in Agriculture) from the Paulista State University Júlio de Mesquita Filho ( 2005). He is currently a professor at the Faculty of Agricultural Sciences at UNESP/Botucatu, where he teaches the physics disciplines of the undergraduate course in Bioprocess Engineering and Biotechnology. He also participates by teaching and advising on post-graduation courses in Agronomy, in the Energy in Agriculture and Irrigation and Drainage programs. He has experience in the areas of renewable energies, solar energy and biomass conversion processes, models for estimating solar radiation and photosynthetically active radiation, as well as studies on methods for measuring diffuse solar radiation.

References

Arduino. (2023). Documentação de Referência da Linguagem Arduino. https://www.arduino.cc/reference/pt/.

Amorim, H. S., Dias, M. A., & Soares, V. (2015). Sensores digitais de temperatura com tecnologia one-wire: Um exemplo de aplicação didática na área de condução térmica. Revista Brasileira de Ensino de Física, 37(4), 4310. https://doi.org/10.1590/S1806-11173742009.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO.

Bica, M. R. R., Dal Pai, A., Ranieiro, M. R., Calca, M. V. C., & Franco, J. R. (2021). Sistema de monitoramento de temperatura em silo de armazenamento de grãos com comunicação sem fio. Brazilian Journal of Development. 7(5). https://doi.org/10.34117/bjdv.v7i5.30175.

Banzi. (2012). Primeiros Passos com o Arduino. Novatec Editora Ltda.

Carvalho, R. C., Mota, F. D., Gabriel Filho, L. R. A., Klar, A. E., & Grassi Filho, H. (2020). Lisímetro para medida da evapotranspiração na cultura do pimentão em sistema hidropônico com substrato. Irriga, 25(2), 361-376. https://doi.org/10.15809/irriga.2020v25n2p361-376.

Dal Pai, A., Escobedo, J. F., Dal Pai, E., Oliveira, A. P., Soares, J. R., & Codato, G. (2016). MEO shadowring method for measuring diffuse solar irradiance: Corrections based on sky cover. Renewable Energy, 99, 754-763. https://doi.org/10.1016/j.renene.2016.07.026.

Damasceno, S. B., Souza Filho, E. A., & Alves, S. B. S. M. (2019). Usos múltiplos dos recursos hídricos em propriedade rural na Bacia Hidrográfica do Rio Tarumã-Açu, Manaus-Am. Meio Ambiente em Foco, 8, 46. https://doi.org/10.29327/15262.5-9.

Doorenbos, J. and Pruitt, W.O. (1977). Crop Water Requirements. Rome: FAO.

Fernandes, E. J., & Turco, J. E. P. (2003). Evapotranspiração De Referência Para Manejo Da Irrigação Em Cultura De Soja. Irriga, 8, 132-141. https://doi.org/10.15809/irriga.2020v25n2p361-376.

Nascimento Filho, A. A., Costa, R. N. T., Sousa, C. H. C., Mateus, C. M. D., & Nunes, K. G. (2020). Effect of excess soil water on the development of Bermuda grass (Cynodon spp.). Revista Brasileira de Engenharia Agrícola e Ambiental, 24(5), 298-303. https://doi.org/10.1590/1807-1929/agriambi.v24n5p298-303.

Machado, R. E., & Mattos, A. (2001). Construção e instalação de um lisímetro com sistema de drenagem. Revista Brasileira de Agrometeorologia. 9, 147-151.

Marouelli, W. A., & Calbo, A. G. (2009) Manejo de irrigação em hortaliças com sistema irrigas. Embrapa. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/428165/1/Proci09.00069.PDF.

Mcroberts. (2011). Arduino Básico. Novate Editora Ltda.

Monte, B. R., Pereira, J. R., & Barranco, J. F. A. (2019). A Agricultura irrigada na região do semiárido legal mineiro: um estudo sobre os avanços e impactos ambientais. Revista Livre de Sustentabilidade e Empreendedorismo, 4(6), 222-248. http://www.relise.eco.br/index.php/relise/article/view/310.

Pereira. P. D. M., & Silva, M. S. (2021). Construção de um kit experimental com arduino para ensino de oscilações em tempo real. Revista Brasileira de Ensino de Física, 43. https://doi.org/10.1590/1806-9126-RBEF-2021-0186.

Sbardella, M., Franco, J. R., Gomes, J. W. S., Dal Pai, A., & Dal Pai, E. (2021). Instrumento digital para medição de diâmetro florestal usando microcontrolador de baixo custo. Research, Society and Development, 10 (17). http://dx.doi.org/10.33448/rsd-v10i17.24197.

Silva, M. B. P., Escobedo, J. F., Rossi, T. J., Santos, C. M., & Silva, S. H. M. G. (2017). Performance of the Angstrom-Prescott Model (A-P) and SVM and ANN techniques to estimate daily global solar irradiation in Botucatu/SP/Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, 26, 11-23.

Stevan, S. L. (2015). Automação e instrumentação industrial com Arduino: teoria e projetos. Érica.

Tagliaferre1, C., Oliveira, R. A., Sediyama, G. C., Cecon, P. R., & Materán, F. J. V. (2011). Uso Do Irrigâmetro Para Estimar A Evapotranspiração De Referência Com Base No Método Do Lisímetro De Lençol Freático Constante. Reveng, 19(2), 152-163. https://doi.org/10.13083/reveng.v19i2.209.

Torres, J. D., Monteiro, I. O., Santos J.R., & Ortiz, M. S. (2015) Aquisição de dados meteorológicos através da plataforma Arduino: construção de baixo custo e análise de dados. Scientia Plena 11(2), 021712.

Published

19/05/2023

How to Cite

PELLISON, A. T.; FRANCO, J. R.; STUCCHI, G.; CALÇA, M. V. C.; RANIERO, M. R.; DAL PAI, A. Automatic reference evapotranspiration data acquisition system coupled to a constant greater table lysimeter. Research, Society and Development, [S. l.], v. 12, n. 5, p. e19412541720, 2023. DOI: 10.33448/rsd-v12i5.41720. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/41720. Acesso em: 24 nov. 2024.

Issue

Section

Agrarian and Biological Sciences