Evaluation of different compositions of stimulating paste in a closed resin system in 10-year-old Pinus elliottii var. elliottii
DOI:
https://doi.org/10.33448/rsd-v12i8.43031Keywords:
Pine; Resin; Production system; Resin production.Abstract
Resin tapping is an activity that aims to extract resin from trees, and thus use this product industrially. The species most used for resin tapping in Brazil is Pinus elliottii var, elliottii. The extracted resin is basically composed of rosin and turpentine, which are used by the chemical industry. Although the main resin processes currently used are well known, new systems must be tested, such as the closed system and new compositions of stimulating pastes. These new processes and the new compositions of stimulating pastes can make the resin tapping even more efficient and profitable. Therefore, our goal was to evaluate the effect on resin production with different compositions of stimulant pastes in resin extraction, in a closed "borehole" resin system, at different collection times, in trees from a population of 10-year-old Pinus elliottii var. elliottii planted in Itapetininga, São Paulo. According to results, the effect of stimulating paste 4 (30% jasmonate, 4% naturoil and water) and paste 6 (30% jasmonate, 4% adhesive spreader and water) was evident in the highest production average resin per tree. Resin tapping in a closed process can be a good alternative for producers to better control the resin production system. The development of the chemical industry that uses products derived from resin and the growth of different markets, with considerable social, economic and environmental impacts, depends on future research and generation of technology for the production of resin and its derivatives.
References
Aguiar, A. V., Shimizu, J. Y., Sousa, V. A., Resende, M. D. V., Freitas, M. L. M., Moraes, M. L. T. & Sebbenn, A. M. (2012). Genetics of oleoresin production with focus on Brazilian planted forests. In: Fett-Neto, A. G. & Rodrigues-Corrêa, K. C. S. (Eds). Pine Resin: Biology, Chemistry and Applications. Research Signpost: Kerala, pp. 87-106.
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M. & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711-728.
ARESB. Associação dos Resinadores do Brasil. (2023) Produção nacional de goma resina de pinus. http://www.aresb.com.br/portal/estatisticas/.
Bhandari, R. (2017). Borehole Resin Extraction method to minimize damage to pine tree. https://thenewshimachal.com/2017/12/borehole-resin-extraction-method-minimize-damage-pine-tree/
Candaten, L., Lazarotto, S., Zwetsch, A. P. R., Rieder, E., Silva, M. D., Balbinot, R. & Trevisan R. (2021) Resinagem de Pinus no brasil: aspectos gerais, métodos empregados e mercado. In: Evangelista, W. V. (Ed.). Produtos florestais não madeireiros: Tecnologia, Mercado, Pesquisas e Atualidades. Editora Científica Digital: Guarujá, pp. 44-58.
Celedon, J. M. & Bohlmann J. (2019). Oleoresin defenses in conifers: Chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytology, 224, 1444-1463.
Cunningham, A. (2012). Pine resin tapping techniques used around the world. Research Signpost, 37, 1-8.
Du, B., Luan, Q., Ni, Z., Sun, H. & Jiang, J. (2022). Radial growth and non-structural carbohydrate partitioning response to resin tapping of slash pine (Pinus elliottii Engelm. var. elliottii). Journal of Forestry Research, 33, 423-433.
Kronka, F. J. N., Bertolani, F. & Ponce, R. H. (2005). A cultura de Pinus no Brasil. Sociedade Brasileira de Silvicultura.
Aoki, H. & Cruz, S. F. (1998). Novas alternativas de resinagem de Pinus. Revista do Instituto Florestal, 10, 123-126.
Hodgens, A.W. & Willians, G. (1993). Pine gum in a botlle? A sealed collection system for production of high purity oleoresin. Naval Stores Review, 103, 2-8.
Instituto Florestal. (2023). Áreas Protegidas/Estações Experimentais/Itapetininga. https://www.infraestruturameioambiente.sp.gov.br/institutoflorestal/areas-protegidas/estacoes-experimentais/itapetininga/.
Lima, A. B., Nicoletti, M. F., Stepka, T. F., Silva, M. T. S. & Soares, P. R. C. (2021). Impactos dendrométricos e econômicos de um povoamento de Pinus elliotti submetidos a produção de resina. Advances in Forestry Science, 8, 475-1487.
Lima, J. C., Costa, F., Füller, T. N., Rodrigues-Corrêa, K. C. D. S., Kerber, M. R., Lima, M. S. & Fett-Neto, A. G. (2016). Reference genes for qPCR analysis in resin-tapped adult slash pine as a tool to address the molecular basis of commercial resinosis. Frontiers in Plant Science, 7, 849.
Oliveira, E., Henrique, A. D. S. S., Pires, R. A. & Souza, F. M. L. (2019). Avaliação econômica na implantação de dois métodos de resinagem de Pinus elliottii na região de Itapeva-SP. Revista científica eletrônica de ciências aplicadas da FAIT, 1. 1-10.
Rodrigues-Corrêa, K. C. S., Lima, J. C. & Fett-Neto, A. G. (2013). Oleoresins from pine: production and industrial uses. Natural products, 136, 4037-4060.
Rossi, M. (2017). Mapa Pedológico do Estado de São Paulo: revisado e ampliado. São Paulo: Instituto Florestal. http://www.iflorestal.sp.gov.br.
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Oliveira, J. B., Coelho, M. R., Lumbreras, J. F. & Cunha, T. J. F. (2006). Sistema brasileiro de classificação de solos, 2.ed. Embrapa Solos: Rio de Janeiro.
S.A.S. Institute Inc. (1999). SAS Procedures Guide. Version 8 (TSMO). SAS Institute Inc.: Cary.
Salvador, V. T., Silva, E. S., Gonçalves, P. G. C. & Cella, R. (2020). Biomass transformation: Hydration and isomerization reactions of turpentine oil using ion exchange resins as catalyst. Sustainable Chemistry and Pharmacy, 15, 100214.
Shimizu, J. Y. & Sebbenn, A. M. (2008). Espécies de Pinus na silvicultura brasileira. In: Shimizu, J. Y. (Ed.). Produção de resina de Pinus e Melhoramento Genético. Embrapa: Brasília, pp. 49- 74.
Vázquez-González, C., López-Goldar, X., Alía, R., Bustingorri, G., Lario, F. J., Lema, De La Mata, R., Sampedro, L., Touza, R., M. & Zas, R. (2021). Genetic variation in resin yield and covariation with tree growth in maritime pine. Forest Ecology and Management, 482, 118843.
Zas, R., Touza, R., Sampedro, L., Lario, F. J., Bustingorri, G. & Lema, M. (2020a). Variation in resin flow among Maritime pine populations: Relationship with growth potential and climatic responses. Forest Ecology and Management, 474, 118351.
Zas, R., Quiroga, R., Touza, R., Vázquez-González, C., Sampedro, L. & Lema, M. (2020b). Resin tapping potential of Atlantic maritime pine forests depends on tree age and timing of tapping. Industrial Crops and Products, 157, 112940.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 José Antonio de Freitas; Antônio Orlando da Luz Freire Neto; Luís Alberto Bucci; Maurício Ranzini; Ananda Virgínia de Aguiar; Israel Luiz de Lima; Eduardo Luiz Longui
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.