Composite material of mortar and polymer: a sustainable option for civil construction and reuse of waste tires in the city of Açailândia, Brazil

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4591

Keywords:

Waste tires; Composite; Construction; Sustainability.

Abstract

That research was based on producing and studying a composite material formed by mortar (cement, sand, and water) with the addition of a polymer (tire residue) in order to minimize construction costs, environmental and public health problems, caused by incorrect disposal of waste tires in the city of Açailândia, Maranhão, Brazil. Six cylindrical specimens were produced in order to outline the sediment, three of which were reinforced with 70g of rubber, processed with 20228g of cement, 2212g of sand, and 1.5 liters of water. The other three only with cement sand and water. Abrasion and compression wear tests were performed to characterize the mortar in the hardened state. For compression testing, a hydraulic press was used in order to measure the mechanical strength of traditional mortar and mortar with the addition of tire rubber. The results showed the potential effectiveness of the mortar developed with the cement, sand, and water compound that had the same characteristics as the traditional mortar mixture only with the polymer incorporation differential. In the compressive strength test, the composite presented a resistance higher than the minimum indicated for the internal and external coating of the strokes with the rubber aggregate (NBR-7215), being verified its potential as an insulating material, resistance of the weathering and preservation of the ambient temperature (NBR-13278), so this composite material met the criteria of being a sustainable option for both civil construction and the environment.

 

References

ABNT (2003). NBR 5738: Concreto-Procedimento para moldagem e cura de corpos de prova. Acesso em: 9 abril 2020, Disponível em: http://professor.pucgoias.edu.br/SiteDocente/admin/arquivosUpload/15030/material/NBR%205738%20-%2015_aula.pdf

ABNT (2004) NBR 10004: Resíduos sólidos – Classificação. Rio de Janeiro: ABNT, 2004. 77 p. Acesso em: 10 abril 2020, Disponível em: http://www.videverde.com.br/docs/NBR-n-10004-2004.pdf.

ABNT (2005). NBR-13278: Argamassa para assentamento e revestimento de paredes e tetos – Determinação da densidade de massa e do teor de ar incorporado. Acesso em: 10 abril 2020, Disponível em: https://www.abntcatalogo.com.br/norma.aspx?ID=3682

ABNT (2005). NBR-13279: Argamassa para assentamento e revestimento de paredes e tetos – Determinação da resistência à tração na flexão e à compressão. Acesso em: 10 abril 2020, Disponível em: https://www.abntcatalogo.com.br/norma.aspx?ID=3685

ABNT (2015). NBR 12655: Concreto de cimento Portland–Preparo, controle, recebimento e aceitação–Procedimento. Rio de Janeiro. Acesso em: 12 abril 2020, Disponível em: https://www.abntcatalogo.com.br/norma.aspx?ID=329285

ABNT (2019). NBR-7215: Concreto–ensaio de compressão de corpos-de-prova cilíndrico: procedimento. Acesso em: 11 abril 2020, Disponível em: https://www.abntcatalogo.com.br/norma.aspx?ID=413557

Albuquerque, A, dos Santos, SB, Calmon, J, & da Silva Filho, LCP. (2019). Análise termo-mecânica de um elemento de concreto massa produzido em concreto com borracha. Revista IBRACON de Estruturas e Materiais, 12(3), 580-589.

Brasileiro, LL, & Matos, JME. (2015). Revisão bibliográfica: reutilização de resíduos da construção e demolição na indústria da construção civil. Cerâmica, 61(358), 178-189.

Brown, KM, Cummings, R, Mrozek, JR, & Terrebonne, P. (2001). Scrap tire disposal: three principles for policy choice. Natural Resources Journal, 9-22.

da Silva Segantini, AA, & Wada, PH. (2011). Estudo de dosagem de tijolos de solo-cimento com adição de resíduos de construção e demolição. Acta Scientiarum. Technology, 33(2), 179-183.

dos Santos Nascimento, A, Moliterno, DG, Senobio, JAM., Oliveira, MTM., da Silva Costa, MV, & Pagoto, A. (2018). Substituição de agregado muído do concreto simples por polipropileno (PP). Diálogos Interdisciplinares, 7(4), 6-11.

Edinçliler, A, Baykal, G, & Saygılı, A. (2010). Influence of different processing techniques on the mechanical properties of used tires in embankment construction. Waste Management, 30(6), 1073-1080.

Elchalakani, M, Aly, T, & Abu-Aisheh, E. (2016). Mechanical properties of rubberised concrete for road side barriers. Australian Journal of Civil Engineering, 14(1), 1-12.

Elchalakani, M. (2015). High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers. In Structures (Vol. 1, pp. 20-38). Elsevier.

Eldin, NN, & Senouci, AB. (1993). Rubber-tire particles as concrete aggregate. Journal of materials in civil engineering, 5(4), 478-496.

Eldin, NN, & Senouci, AB. (1994). Measurement and prediction of the strength of rubberized concrete. Cement and Concrete Composites, 16(4), 287-298.

Fazzan, JV, Pereira, AM, & Akasaki, JL. (2016). Estudo da viabilidade de utilização do Resíduo de Borracha de Pneu em Concretos Estruturais. Periódico Eletrônico Fórum Ambiental da Alta Paulista, 12(6).

Forcato, M, Dias, J., Dalberto, A., & Ortiz, G. (2017). A borracha sintética de chinelos descartados no design de produtos. DAT Journal, 2(2).

Guo, YC, Zhang, JH, Chen, GM, & Xie, ZH. (2014). Compressive behaviour of concrete structures incorporating recycled concrete aggregates, rubber crumb and reinforced with steel fibre, subjected to elevated temperatures. Journal of cleaner production, 72, 193-203.

Harish, GR, & Shivakumar, MN. (2013). Performance Evaluation of Bituminous Concrete Incorporating Crumb Rubber and Waste Shredded Thermoplastics. Int. J. Res. Eng. Technol, 2321(7308), 233-238.

Henkes, JA, & Rodrigues, CM. (2015). Reciclagem de pneus: atitude ambiental aliada à estratégia econômica. Revista Gestão & Sustentabilidade Ambiental, 4(1), 448-473.

Hesami, S, Hikouei, IS, & Emadi, SAA. (2016). Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber. Journal of cleaner production, 133, 228-234.

Huang, B, Shu, X, & Li, G. (2005). Laboratory investigation of portland cement concrete containing recycled asphalt pavements. Cement and Concrete Research, 35(10), 2008-2013.

Icibra, C. (2020). Cimento Itaqui. Acesso em: 10 abril 2020, Disponível em: http://cimentoitaqui.com.br/#eluidadc7751d.

Khaloo, AR, Dehestani, M, & Rahmatabadi, P. (2008). Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste management, 28(12), 2472-2482.

Li, Z, Li, F, & Li, JSL. (1998). Properties of concrete incorporating rubber tyre particles. Magazine of concrete research, 50(4), 297-304.

Nicácio, J, & Junior, AP. (2019). Saneamento básico, meio ambiente e a saúde pública em Açailândia-MA. Revista Saúde e Meio Ambiente, 8(1), 123-136.

Pelisser, F, Zavarise, N, Longo, TA, & Bernardin, AM. (2011). Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition. Journal of cleaner production, 19(6-7), 757-763.

Pereira, AS et al. (2018b). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Acesso em: 7 maio 2020. Disponível em:https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Rodrigues, MRP, & Ferreira, OP. (2009). Compósito cimentício com adição de partículas de borracha de pneus inservíveis. Revista Minerva–Pesquisa & Tecnologia, 3(3), 255-261.

Siddique, R, & Naik, TR. (2004). Properties of concrete containing scrap-tire rubber–an overview. Waste management, 24(6), 563-569.

Silvestravičiūtė, I, & Šleinotaitė-Budrienė, L. (2002). Possibility to use scrap tyres as an alternative fuel in cement industry. Environmental research, engineering and management, 3(21), 38-48.

Topçu, İB, & Sarıdemir, M. (2008). Prediction of rubberized mortar properties using artificial neural network and fuzzy logic. Journal of Materials Processing Technology, 199(1-3), 108-118.

Published

25/05/2020

How to Cite

SANTOS, C. A. A. S. dos; LUCENA, M. S. de; MORAES, W. dos S.; SILVA, L. C.; SILVA, D. E. C.; SERRA, M. A. A. de O.; FAÇANHA FILHO, P. de F. Composite material of mortar and polymer: a sustainable option for civil construction and reuse of waste tires in the city of Açailândia, Brazil. Research, Society and Development, [S. l.], v. 9, n. 7, p. e538974591, 2020. DOI: 10.33448/rsd-v9i7.4591. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4591. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings