Analysis of Coupled Ocean-Atmosphere Variability: Madden-Julian Oscillation, La Niña, and Tropical Instability Waves – A case study of convective activity over the State of Ceará during the year 2010

Authors

DOI:

https://doi.org/10.33448/rsd-v13i8.46592

Keywords:

Madden-Julian Oscillation; Northeast Brazil; Tropical instability waves; Wavelets.

Abstract

The ocean-atmosphere interaction and global climate variability have been extensively studied. This work investigates the impact of atmospheric changes on the total rainfall in Northeast Brazil, focusing on Ceará. Phenomena such as the Madden-Julian Oscillation (MJO), La Niña, and Tropical Instability Waves (TIW) can influence convective activity in the region. The objective of this study was to analyze, through the spectral variability obtained with the Morlet’s Mother Wavelet Transform, the intraseasonal energy coupling (20-70 days) between the MJO and TIW during a period of strong La Niña, and its impact on precipitation in Ceará. The study period was from June to October 2010, when the Intertropical Convergence Zone (ITCZ) does not directly influence rainfall in the Northeast. During this period, an extreme MJO event on 28.09.2010 had a remote response in Ceará on 23.10.2010, and increased intraseasonal activity of the TIW was observed in the tropical Atlantic at 1°N21°W. The results showed that approximately 80% of the intraseasonal spectral energy generated by the MJO in the Indian Ocean region reached Ceará, causing strong convective activity and high rainfall indices. The conservation of this energy can be explained by the basic state of the atmosphere, which was favored by the strong La Niña between September and October. It is concluded that the interaction between the Indian Ocean and Ceará, and between Ceará and the TIW (1°N21°W), occurs on a 24-day scale, with energy transfer from the 32-day scale to the 24-day oscillation scale, resulting in high rainfall indices in various regions of Ceará.

References

Alvarez, M. S., Vera, C., Kiladis, G. N., & Liebmann, B. (2015). Influence of the Madden-Julian Oscillation on precipitation and surface air temperature in South America. Climate Dynamics, 44(7-8), 2057–2071. https://doi.org/10.1007/s00382-015-2581-6

Barbosa, A. C. B. (2007). Estudo da variabilidade acoplada oceano-atmosfera no Atlântico tropical (Dissertação de Mestrado). Universidade de São Paulo, São Paulo.

Barbosa, A. C. B. (2012). Oscilações intrasazonais no Indo-Pacífico e na zona de convergência do Atlântico Sul: Estudo observacional e numérico (Tese de doutorado). Universidade de São Paulo. https://doi.org/10.11606/T.14.2012.tde-25062013-120942

Barbosa, A. C. B. (2015). De Fourier a ondletas: Histórico & aplicação. Universidade de São Paulo. https://doi.org/10.11606/T.14.2015.tde-25062013-120942

Collins, D. C., & Sinsky, E. (2022). ENSO and its influence on global precipitation patterns: A review of recent findings. Journal of Climate, 35(4), 1550–1565. https://doi.org/10.1175/JCLI-D-21-0502.1

Duchon, C. E. (1979). Lanczos filtering in one and two dimensions. Journal of Applied Meteorology, 18(8), 1016–1022. https://doi.org/10.1175/1520-0450(1979)018<1016>2.0.CO;2

Fonseca da Silva, D. (2016). Aplicação de análises de ondaletas para detecção de ciclos e extremos pluviométricos no leste do Nordeste do Brasil. Revista Brasileira de Meteorologia, 32(2), 187-198. https://doi.org/10.1590/0102-77863220002. Disponível em: https://www.scielo.br/j/rbmet/a/77RZdZy9dwSy6V4rNZL6pKK/?lang=pt. Acesso em 6 de fevereiro de 2023.

Grimm, A. M., & Reason, C. J. C. (2015). Intraseasonal teleconnections between South America and South Africa. Journal of Climate, 28(23), 9489–9497. https://doi.org/10.1175/JCLI-D-15-0116.1

Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(6), 561–566. https://doi.org/10.5194/npg-11-561-2004

Hall, A., & Visbeck, M. (2002). Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. Journal of Climate, 15(21), 3043–3057. https://doi.org/10.1175/1520-0442(2002)015<3043>2.0.CO;2

INPE/CPTEC. (2010). Climanálise: Boletim de monitoramento e análise climática. Boletim de monitoramento do clima do Nordeste. Disponível em http://climanalise.cptec.inpe.br/~rclimanl/boletim/pdf/pdf02/out10.pdf. Acesso em 18 de janeiro de 2023.

Lima dos Reis, G. N. (2020). Estudo das ondas de instabilidade tropical no oceano Atlântico e seus impactos na atmosfera (Dissertação de Mestrado). Instituto Nacional de Pesquisas Espaciais, Programa de Pós-Graduação em Sensoriamento Remoto, São José dos Campos. Disponível em http://urlib.net/8JMKD3MGP3W34R/428TANB. Acesso em 4 de janeiro de 2023.

Köche, J.C. (2011). Fundamentos de metodologia científica: teoria da ciência e iniciação à pesquisa. (29ª ed). Petrópolis: Vozes.

Madden, R. A., & Julian, P. R. (1972). Description of global-scale circulation cells in the tropics with a 40–50-day period. Journal of the Atmospheric Sciences, 29(6), 1109–1123. https://doi.org/10.1175/1520-0469(1972)029<1109>2.0.CO;2

NOAA’s Climate Prediction Center. (2001). NOAA’s climate prediction center. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php

Olivier, L., Reverdin, G., Hasson, A., & Boutin, J. (2020). Tropical instability waves in the Atlantic Ocean: Investigating the relative role of sea surface salinity and temperature from 2010 to 2018. Journal of Geophysical Research: Oceans, 125, e2020JC016641. https://doi.org/10.1029/2020JC016641

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Santa Maria, UFSM.

Shi, W., & Wang, M. (2021). Modulação de onda de instabilidade tropical de clorofila-a no Pacífico Equatorial. Scientific Reports, 11, 22517.

Sobral, B. S., Oliveira-Júnior, J. F., Gois, G., Terassi, P. M. de B., & Muniz-Júnior, J. G. R. (2021). Variabilidade espaço-temporal e interanual da chuva no estado do Rio de Janeiro. Revista Brasileira de Climatologia, 22, 1-20. https://doi.org/10.5380/abclima.v22i0.55592

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061>2.0.CO;2

Valadão, C., Lucio, P. S., Chaves, R. R., & Carvalho, L. M. V. (2015, outubro). The influence of the Madden-Julian oscillation on rainfall in the Seridó/RN, Northeast Brazil. Trabalho apresentado no VI Simpósio Internacional de Climatologia (VI SIC), Natal, RN, Brasil.

Wang, X., & Lu, J. (2023). The influence of El Niño and La Niña on regional climate extremes: A global perspective. Climate Dynamics, 61(3), 2375–2392. https://doi.org/10.1007/s00382-022-06541-7

Published

25/08/2024

How to Cite

FERREIRA, J. M. da S. .; BARBOSA, A. C. B. .; BRANDÃO, M. D. R. .; SILVA, F. A. N. da .; SILVA, T. L. C. da .; GARCIA, B. R. . Analysis of Coupled Ocean-Atmosphere Variability: Madden-Julian Oscillation, La Niña, and Tropical Instability Waves – A case study of convective activity over the State of Ceará during the year 2010. Research, Society and Development, [S. l.], v. 13, n. 8, p. e10013846592, 2024. DOI: 10.33448/rsd-v13i8.46592. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46592. Acesso em: 6 jan. 2025.

Issue

Section

Exact and Earth Sciences