Comprehensive analysis of the regulation of autophagy gene expression by microRNAs
DOI:
https://doi.org/10.33448/rsd-v14i3.48191Keywords:
Autophagy; microRNAs; Neoplasms; Gene expression; Biomarkers.Abstract
Autophagy can be defined as a cellular mechanism activated when an organelle is aged or dysfunctional, leading to the degradation of its components for energy production. It acts as a tumor suppressor or oncogenic mechanism, assuming a dubious role in tumorigenesis. Numerous studies have described alterations in the expression of microRNAs (miRNAs) that modulate the autophagic process in different tumor types. This study aimed to review basic concepts about autophagy and identify the main miRNAs that regulate the expression of autophagy-related genes and their role as potential tumor biomarkers. For this purpose, a bibliographic search was carried out in PubMed and Scielo using generic terms. The miRTarBase and DIANA-TarBase v8 public databases were used to collect validated miRNA-target gene interactions, while UALCAN allowed comparing the gene expression profiles of selected miRNAs in normal vs. tumors. The autophagy-related genes with the highest number of miRNAs validated as regulators of their expression were ATG1, ATG9A, ATG16L1, and SQSTM1. We also found three miRNAs (hsa-miR-16-5p, hsa-miR-20a-5p, and hsa-miR-155-5p) that regulate a greater number of autophagy-related genes. Interestingly, hsa-miR-20a-5p showed significant overexpression in prostate, breast, lung, colorectal, and liver tumors. Taken together, these data suggest hsa-miR-20a-5p as the most outstanding miRNA in the regulation of autophagy and a promising biomarker of solid tumors, which requires further studies to validate its role in tumorigenesis.
References
Agarwal, V., Bell, G. W., Nam, J.-W., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. ELife, 4. https://doi.org/10.7554/elife.05005
Anima. (2014). Manual revisão bibliográfica sistemática integrativa: a pesquisa baseada em evidências. Grupo Anima. https://biblioteca.cofen.gov.br/wp-content/uploads/2019/06/manual_revisao_bibliografica-sistematica-integrativa.pdf.
Betel, D., Koppal, A., Agius, P., Sander, C., & Leslie, C. (2010). Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biology, 11(8), R90. https://doi.org/10.1186/gb-2010-11-8-r90
Cao, W., Li, J., Yang, K., & Cao, D. (2021). An overview of autophagy: Mechanism, regulation and research progress. Bulletin Du Cancer, 108(3), 304–322. https://doi.org/10.1016/j.bulcan.2020.11.004
Chandrashekar, D. S., Karthikeyan, S. K., Korla, P. K., Patel, H., Shovon, A. R., Athar, M., Netto, G. J., Qin, Z. S., Kumar, S., Manne, U., Creighton, C. J., & Varambally, S. (2022). UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 25, 18–27. https://doi.org/10.1016/j.neo.2022.01.001
Chen, L., Zhou, Y., Sun, Q., Zhou, J., Pan, H., & Sui, X. (2017). Regulation of Autophagy by MiRNAs and Their Emerging Roles in Tumorigenesis and Cancer Treatment. International Review of Cell and Molecular Biology, 1–26. https://doi.org/10.1016/bs.ircmb.2017.03.003
Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H., & Wong, G. (2019). Trends in the development of miRNA bioinformatics tools. Briefings in Bioinformatics, 20(5), 1836–1852. https://doi.org/10.1093/bib/bby054
Chou, C.-H., Chang, N.-W., Shrestha, S., Hsu, S.-D., Lin, Y.-L., Lee, W.-H., Yang, C.-D., Hong, H.-C., Wei, T.-Y., Tu, S.-J., Tsai, T.-R., Ho, S.-Y., Jian, T.-Y., Wu, H.-Y., Chen, P.-R., Lin, N.-C., Huang, H.-T., Yang, T.-L., Pai, C.-Y., & Tai, C.-S. (2015). miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Research, 44(D1), D239–D247. https://doi.org/10.1093/nar/gkv1258
Crossetti, M. G. M. (2012). Revisión integradora de la investigación en enfermería el rigor científico que se le exige. Rev. Gaúcha Enferm. 33(2): 8-9.
Elton, T. S., & Yalowich, J. C. (2015). Experimental procedures to identify and validate specific mRNA targets of miRNAs. EXCLI Journal, 14, 758–790. https://doi.org/10.17179/excli2015-319
Finnegan, E. F., & Pasquinelli, A. E. (2013). MicroRNA biogenesis: Regulating the Regulators. Critical Reviews in Biochemistry and Molecular Biology, 48(1), 51–68. https://doi.org/10.3109/10409238.2012.738643
Galluzzi, L., Pietrocola, F., Bravo-San Pedro, J. M., Amaravadi, R. K., Baehrecke, E. H., Cecconi, F., Codogno, P., Debnath, J., Gewirtz, D. A., Karantza, V., Kimmelman, A., Kumar, S., Levine, B., Maiuri, M. C., Martin, S. J., Penninger, J., Piacentini, M., Rubinsztein, D. C., Simon, H.-U., & Simonsen, A. (2015). Autophagy in malignant transformation and cancer progression. The EMBO Journal, 34(7), 856–880. https://doi.org/10.15252/embj.201490784
Grimson, A., Farh, K. K.-H., Johnston, W. K., Garrett-Engele, P., Lim, L. P., & Bartel, D. P. (2007). MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing. Molecular Cell, 27(1), 91–105. https://doi.org/10.1016/j.molcel.2007.06.017
Hill, M., & Tran, N. (2021). miRNA interplay: mechanisms and consequences in cancer. Disease Models & Mechanisms, 14(4). https://doi.org/10.1242/dmm.047662
Iorio, M. V., & Croce, C. M. (2012). MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Molecular Medicine, 4(3), 143–159. https://doi.org/10.1002/emmm.201100209
Jorge AL, Pereira ER, Oliveira CS, Ferreira ES, Menon ET, Diniz SN, et al. MicroRNAs: entendendo seu papel como reguladores da expressão gênica e seu envolvimento no câncer. einstein (São Paulo). 2021;19:eRB5996 https://10.31744/einstein_journal/2021RB5996
Lamb, C. A., Yoshimori, T., & Tooze, S. A. (2013). The autophagosome: origins unknown, biogenesis complex. Nature Reviews Molecular Cell Biology, 14(12), 759–774. https://doi.org/10.1038/nrm3696
Latorre, I., Leidinger, P., Backes, C., Domínguez, J., Luiza, M., Maldonado, J., Prat, C., Ruiz-Manzano, J., Sánchez, F., Casas, I., Keller, A., Hagen von Briesen, Knobel, H., Meese, E., & Meyerhans, A. (2015). A novel whole-blood miRNA signature for a rapid diagnosis of pulmonary tuberculosis. European Respiratory Journal/˜the œEuropean Respiratory Journal, 45(4), 1173–1176. https://doi.org/10.1183/09031936.00221514
Pasculli, B., Barbano, R., Fontana, A., Biagini, T., Pia, M., Rendina, M., Vanna Maria Valori, Morritti, M., Bravaccini, S., Ravaioli, S., Maiello, E., Graziano, P., Murgo, R., Massimiliano Copetti, Mazza, T., Vito Michele Fazio, Manel Esteller, & Parrella, P. (2020). Hsa-miR-155-5p Up-Regulation in Breast Cancer and Its Relevance for Treatment With Poly[ADP-Ribose] Polymerase 1 (PARP-1) Inhibitors. Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.01415
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.
Peterson, S. M., Thompson, J. A., Ufkin, M. L., Sathyanarayana, P., Liaw, L., & Congdon, C. B. (2014). Common features of microRNA target prediction tools. Frontiers in Genetics, 5. https://doi.org/10.3389/fgene.2014.00023
Sethupathy, P. (2005). TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA, 12(2), 192–197. https://doi.org/10.1261/rna.2239606
Soudeh Ghafouri-Fard, Tayyebeh Khoshbakht, Bashdar Mahmud Hussen, Abdullah, S., Taheri, M., & Samadian, M. (2022). A review on the role of mir-16-5p in the carcinogenesis. 22(1). https://doi.org/10.1186/s12935-022-02754-0
Soudeh Ghafouri-Fard, Tayyebeh Khoshbakht, Hussen, B. M., Jamal, H. H., Taheri, M., & Mohammadreza Hajiesmaeili. (2022). A Comprehensive Review on Function of miR-15b-5p in Malignant and Non-Malignant Disorders. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.870996
Tran, S., Fairlie, W. D., & Lee, E. F. (2021). BECLIN1: Protein Structure, Function and Regulation. Cells, 10(6), 1522. https://doi.org/10.3390/cells10061522
Wang, C.-W., & Klionsky, D. J. (2003). The Molecular Mechanism of Autophagy. Molecular Medicine, 9(3-4), 65–76. https://doi.org/10.1007/bf03402040
Yunus Akkoc, & Devrim Gozuacik. (2020). MicroRNAs as major regulators of the autophagy pathway. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1867(5), 118662–118662. https://doi.org/10.1016/j.bbamcr.2020.118662
Zhai, H., Fesler, A., & Ju, J. (2013). MicroRNA: a third dimension in autophagy. Cell Cycle, 12(2), 246–250. https://doi.org/10.4161/cc.23273
Zhao, Y., Wang, Z., Zhang, W., & Zhang, L. (2019). MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. BioFactors, 45(6), 844–856. https://doi.org/10.1002/biof.1555
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Daniela Beló Brum; Igor Araújo Vieira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.