Trichoderma harzianum UFT-25 and its relationship with the promotion of Eucalyptus plant growth
DOI:
https://doi.org/10.33448/rsd-v14i2.48253Keywords:
Growth promoter; Endophytic fungi; Trichoderma harzianum UFT-25; Eucalyptus.Abstract
Fungi of the genus Trichoderma are known for their activity as plant growth promoters. This study aimed to evaluate the morphological responses of Eucalyptus plants inoculated with Trichoderma harzianum UFT-25. The experiment was developed in a completely randomized design with two treatments: non-inoculated (control) plants and plants inoculated with T. harzianum UFT-25 with ten replicates. The isolate was developed in 50 mm Petri dishes containing a potato, dextrose, and agar (PDA). All plates were incubated in a biochemical oxygen demand (BOD) chamber at 25 ± 2 ºC with a photoperiod of 12 h for seven days. Plants were inoculated by spraying the fourth, fifth, and sixth fully expanded leaves with a suspension of T. harzianum UFT-25 conidia. Control plants received an application of autoclaved distilled water containing 0.02% (v/v) Tween 80. Analysis of the results revealed a significant difference between the treatments in terms of height, diameter, leaf and branch numbers, dry mass, and chlorophyll. T. harzianum UFT-25 stimulated greater growth in the inoculated plants than control plants at 15, 30, 45, and 60 d. The inoculated plants have been shown an increase of 16.19% in the shoot dry mass and 51.65% in the root dry mass. These results open new avenues for exploring the potential of T. harzianum UFT-25, proving its efficiency in promoting the growth of Eucalyptus plants. Thus, the use of this fungus can contribute to the reduction of inputs, such as fungicides and fertilizers, promoting greater sustainability in forestry production.
References
Aamir, M. et al. (2023). Transcriptomic characterization of Trichoderma harzianum T34 primed tomato plants: assessment of biocontrol agent induced host specific gene expression and plant growth promotion. BMC Plant Biology, 23, 1–38. https://doi.org/10.1186/s12870-023-04502-6
Abdenaceur, R. et al. (2022). Effective biofertilizer Trichoderma spp. isolates with enzymatic activity and metabolites enhancing plant growth. International Microbiology, 25, 817–829. https://doi.org/10.1007/s10123-022-00263-8
Akladious, S. A. & Abbas, S. M. (2014). Application of Trichoderma harzianum as a biofertilizer potential in maize growth. Journal of Plant Nutrition, 37, 30–49. https://doi.org/10.1080/01904167.2013.829100
Azarmi, R., Hajieghrari, B. & Giglou, A. (2011). Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology, 109(31), 5850–5855. https://doi.org/10.5897/AJB10.1600
Azevedo, G. B. et al. (2017). Effect of Trichoderma spp. on Eucalyptus camaldulensis clonal seedlings growth. Scientia Forestalis, 45, 343–352. DOI: dx.doi.org/10.18671/scifor.v45n114.10343
Bailey, B. A. et al. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46(1), 24–35. https://doi.org/10.1016/j.biocontrol.2008.01.003
Bailey, B. A., Strem, M. D. & Wood, D. (2009) Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycology Research, 113(12), 1365–1376. https://doi.org/10.1016/j.mycres.2009.09.004
Bandeira, J. B. et al. (2023). Endophytic colonization of five Trichoderma species and their effects on growth of Eucalyptus hybrid. Brazilian Journal of Microbiology, 54, 3113–3125. https://doi.org/10.1007/s42770-023-01112-0
Batista, K. O. M. et al. (2021). Effects of Trichoderma strigosellum in Eucalyptus urophylla development and leaf-cutting ant behavior. Journal of Fungi, 8(1), 1–14. https://doi.org/10.3390/jof8010015
Bernardes, T. G., Silveira, P. M. & Mesquita, M. A. M. (2010). Regulador de crescimento e Trichoderma harzianum aplicados em sementes de feijoeiro cultivado em sucessão a culturas de cobertura. Pesquisa Agropecuária Tropical, 40, 439–446.
Bjorkman, T., Blanchard, L. M. & Harman, G. E. (1998). Growth enhancement of shrunken-2 sweet corn when colonized with Trichoderma harzianum 1295–22: effect of environmental stress. Journal American Horticulture Science, 123, 35–40.
Bononi, L. et al. (2020). Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Science Reports, 10, 1–13. https://doi.org/10.1038/s41598-020-59793-8
Brotman, Y., Gupta, J. K. & Viterbo, A. (2010). Trichoderma. Current Biology, 20, 390–1. doi: 10.1016/j.cub.2010.02.042
Carvalho, D. D. et al. (2011). Biocontrol of seed pathogens and growth promotion of common bean seedlings by Trichoderma harzianum. Pesquisa Agropecuária Brasileira, 46, 822–8.
Carvalho Filho, M R, Mello, S C M, Santos, R P, & Menezes, J E (2008) Avaliação de isolados de Trichoderma na promoção de crescimento, produção de ácido indolacético in vitro e colonização endofítica de mudas de eucalipto. Brasília, Cenargen. pp 16 (Boletim de Pesquisa e Desenvolvimento, 226).
Castro, D. B. & Freitas, R. S. B. (2024). Induction of initial growth of common bean (Phaseolus vulgaris) with the use of Trichoderma spp. Elevag, Brazil, pp 1-13.
Chagas, A. F. Jr. et al. (2024). Trichoderma asperellum as growth promoter in Enterolobium contortisiliquum (Vell) Morong. Ciencia Florestal, 34(2), 1–17. https://doi.org/10.5902/1980509864187
Chagas, A. F. Jr. et al. (2021). Trichoderma como promotor de crescimento de mudas de eucaliptos. Journal of Biotechnology Biodiversity, 9(1), 60–72. https://doi.org/10.20873/jbb.uft.cemaf.v9n1.chagasjunior
Chagas, A. F. Jr. et al. (2020). Agronomic efficiency of soybean inoculated with Trichoderma and Purpureocillium in cerrado conditions, Tocantins, Brazil. Journal of Biotechnology Biodiversity, 8(4), 319–25. https://doi.org/10.20873/jbb.uft.cemaf.v8n4.chagasjr
Chagas, A.F . Jr. et al. (2022). Efficiency of Trichoplus (Trichoderma asperellum) as a plant growth promoter in soybean in the Cerrado field. Research Society and Developpment, 11(5), 1–9. https://doi.org/10.33448/rsd-v11i5.27970
Chagas, L.F.B. et al. (2016a). Bioprospecção de Trichoderma spp. sobre o crescimento micelial de Colletotrichum cliviae e C. truncatum. Brazilian Journal of Biology Sciience, 14, 238–242.
Chagas, L. F. B. et al. (2017b) Trichoderma na promoção do crescimento vegetal. Revista de Agricultura Neotropical, 4(3), 97–102. https://doi.org/10.32404/rean.v4i3.1529
Chagas, L. F. B. et al. (2017a). Rice growth influence by Trichoderma spp. with natural phosphate fertilization under greenhouse conditions. International Journal of Development Research, 7, 13147–13152.
Chagas, L. F. B. et al. (2016b). Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Brazilian Journal of Botany, 39, 437–445. https://doi.org/10.1007/s40415-015-0247-6
Chaverri, P., Gazis, R. O. & Samuels, G. J. (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycology, 103, 139–151.1https://doi.org/10.3852/10-078
Eneas, J. S. M. et al. (2022). Spatial variability of the dendrometric properties of Eucalyptus urophylla in the Cerrado Biome. Research Society and Development, 11(11), 1–12. https://doi.org/10.33448/rsd-v11i11.33638
Evans, H. C., Holms, K. A. & Thomas, S. E. (2003) Endophytes and mycoparasites associated with an indigenous forest tree, Theobromae gibereli, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycology Progress, 2, 149–160. https://doi.org/10.1007/s11557-006-0053-4
Ferreira, D. F. (2019). Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Bioma, 37, 529–535.
Fontenelle, A. D. B. et al. (2011). Growth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Protection, 30, 1492–1500. https://doi.org/10.1016/j.cropro.2011.07.019
Gana, L. P., Etsassala, N. G. E. R. & Nchu, F. (2023). Interactive effects of water deficiency and endophytic Beauveria bassiana on plant growth, nutrient uptake, secondary metabolite contents, and antioxidant activity of Allium cepa L. Journal of Fungi, 8(8), 1–13. https://doi.org/10.3390/jof8080874
Görgen, C. A. et al. (2009). Controle do mofobranco com palhada e Trichoderma harzianum 1306 em soja. Pesquisa Agropecuária Brasileira, 44, 1583–1590.
Harman, G. E. et al. (2004). Trichoderma species: opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56. https://doi.org/10.1038/nrmicro797
Ibá-Indústria Brasileira de Arvores (2023) Relatório anual Ibá. https://iba.org/datafiles/publicacoes/relatorios/relatorio-anual-iba2023-r.pdf. Accessed in 20 december 2024
Joseph, L. A. et al. (2023). Effect assessment of pesticides on the growth of Beauveria bassiana. Research Society and Development, 12(14), 1–9. https://doi.org/10.33448/rsd-v12i14.44676
Joseph, L. A. et al. (2022). Compatibility of fungicides with Trichoderma asperelloides and Azospirillum brasilense. Scientia Agrarian Paranaensis, 21(1), 30–5. https://doi.org/10.18188/sap.v21i1.29155
Li, R. C. et al. (2015). Solubilization of Phosphate and Micronutrients by Trichoderma harzianum and Its Relationship with the Promotion of Tomato Plant Growth. PLOS One, 6, 1-16. https://doi.org/10.1371/journal.pone.0130081
Liliana, M. B. et al. (2017). Response of Phaseolus vulgaris to inoculation to different dose of Trichoderma harzianum with nitrogen fertilizer reduced at 50%. Journal Selva Research and Society, 8, 135–144.
Liu, Q. et al. (2020). The Growth Promotion of Peppers (Capsicum annuum L.) by Trichoderma guizhouense NJAU4742-Based Biological Organic Fertilizer: Possible Role of Increasing Nutrient Availabilities. Microorganisms, 9, 1–23. https://doi.org/10.3390/microorganisms8091296
Maciel, J. C. et al. (2023). Development of comercial Eucalyptus clone in soil with indaziflam herbicide residues. Forests, 14(9), 19–33. https://doi.org/10.3390/f14091923
Marchetti, C. R. (2021) Controle Biológico de Sclerotinia sclerotiorum (Lib.) de bary e promoção de crescimento de plantas de feijão por cepas de Trichoderma spp. isoladas de plantas do Cerrado e Pantanal. Dissertation, Federal University of Mato Grosso do Sul
Milanesi, P. M. et al. (2013). Detecção de Fusarium spp. e Trichoderma spp. e antagonismo de Trichoderma spp. em soja sob plantio direto. Ciencias Agrárarias, 34, 3219–3234. https://doi.org/10.5433/1679-0359.2013v34n6Supl1p3219
Natsiopoulos, D. et al. (2022). Growth-Promoting and Protective Effect of Trichoderma atrobrunneum and T. simmonsii on Tomato against Soil-Borne Fungal Pathogens. Journal of Crop, 2, 202–217. https://doi.org/10.3390/crops2030015
Nunes, T. V. et al. (2023). Endophytic development of the entomopathogenic fungus Beauveria bassiana reduced the development of galls and adult emergence of Leptocybe invasa in susceptible Eucalyptus. Sustainability, 15(23), 1–13. https://doi.org/10.3390/su152316411
Oliveira, R. S. et al. (2022). Trichoderma in the phytopathogenic biocontrol. Bulgarian Journal of Agriculture Science, 28, 717–724.
Oliveira, R. S. et al. (2021). Biocontrol in vitro of Trichoderma spp. for pathogens Rhizoctonia solani, Fusarium oxysporum, and Curvularia lunata. Revista de Ciencias Agrárias, 44, 58–67.
Pachoute, J., Nascimento, V.L. & de Souza, D.J. (2021). Beauveria bassiana enhances the growth of cowpea plants and increases the mortality of Cerotoma arcuata. Current of Microbiology, 78, 3762–3769. https://doi.org/10.1007/s00284-021-02638-y.
Rawat, L. et al. (2011). Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil, 347, 387–400. https://doi.org/10.1007/s11104-011-0858-z
Resende, M. E. L. et al. (2004). Inoculação de sementes de milho utilizando o Trichoderma harzianum como promotor de crescimento. Ciencias Agrotecnologia, 28, 793–798. https://doi.org/10.1590/S1413-70542004000400010
Ribeiro, A. P. M. et al. (2023). Uso de Trichoderma na promoção de crescimento de mudas florestais. Research Society and Development, 12(1), 1–14. http://dx.doi.org/10.33448/rsd-v12i1.39138
Ribeiro, A. S. V. et al. (2023). Efficiency of Trichoderma and Bacillus subtilis as growth promoters in Eucalyptus Corymbia citriodora. Revista Observatorio de la Economia Latinoamericana, 21(11), 20380-20397. https://doi.org/10.55905/oelv21n11-097
Rocha, J. P. L. et al. (2023). Morphophysiological responses in Eucalyptus demonstrate the potential of the entomopathogenic fungus Beauveria bassiana to promote resistance against the Galling wasp Leptocybe invasa. Forests, 14(7), 1–11. https://doi.org/10.3390/f14071349
Salas-Marina, M. A. et al. (2011). Colonization of Arabidopsis roots by Trichoderma harzianum promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. European Journal of Plant Pathology, 131, 15–26. https://doi.org/10.1007/s10658-011-9782-6
Salla, T. D., Astarita, L. V. & Santarém, E. R. (2016) Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea. Planta, 243, 1055–1070. https://doi.org/10.1007/s00425-015-2460-8
Santos, J. L. et al. (2021). Volatile organic compounds produced by Trichoderma sp. morphophysiologically altered maize growth at initial stages. Australian Journal of Crop Science, 15, 215–223. doi: 10.21475/ajcs.21.15.02.p2605
Shanmugaiah, V. et al. (2009). Effect of single application of Trichoderma viride and Pseudomonas fluorescens on growth cotton plants. African Journal Agriculture and Research, 4, 1220–1225.
Silva, V. N. et al. (2011). Growth promotion and resistance induction against anthracnose in cucumber using Trichoderma spp. Pesquisa Agropecuária Brasileira, 46(12), 1609–1618. https://doi.org/10.1590/S0100-204X2011001200005
Singh, P. et al. (2023). Seed Biopriming with Trichoderma harzianum for Growth Promotion and Drought Tolerance in Rice (Oryza sativus). Agriculture Research, 12, 154–162. https://doi.org/10.1007/s40003-022-00641-8
Singh, V, Singh, P N, Yadav, R L, Awasthi, S K, Joshi, B B, Singh, R K, Lal, R J, Duttamajumder, S K (2010) Increasing the efficacy of Trichoderma harzianum for nutrient uptake and control of red rot in sugarcane. Journal of Horticulture and Forestry, 2(4), 66–71.
Subramaniam, S. et al. (2022). Role of Trichoderma in Plant Growth Promotion. In: Amaresan N. et al. (eds). Advances in Trichoderma Biology for Agricultural Applications. Fungal Biolology, 23, 257–280.https://doi.org/10.1007/978-3-030-91650-3
Vukelic, I.,D. et al. (2021). Effects of Trichoderma harzianum on Photosynthetic Characteristics and Fruit Quality of Tomato Plants. International Journal of Molecular Sciences, 22(13), 1-16. https://doi.org/10.3390/ijms22136961
Zaw, M. & Matsumoto, M. (2020) Plant growth promotion of Trichoderma virens, Tv911 on some vegetables and its antagonistic effect on Fusarium wilt of tomato. Environmental Control in Biology, 58(1), 7–14. https://doi.org/10.2525/ecb.58.7
Zhang, F. et al. (2013). Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization. Plant Soil, 368, 433–444. https://doi.org/10.1007/s11104-012-1519-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Louis Antoniel Joseph; Manoucheca Jean; Ilgentche Appolon; Judson Pierre; Kerley-Vivaldi Jean; Frantz Fils-Aimé; Bento Gil Uane

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.