Trichoderma harzianum UFT-25 y su relación con la promoción del crecimiento de plantas de Eucalyptus
DOI:
https://doi.org/10.33448/rsd-v14i2.48253Palabras clave:
Promotor de crecimiento; Hongos endófitos; Trichoderma harzianum UFT-25; Eucalyptus.Resumen
Los hongos del género Trichoderma son conocidos por su actividad como promotores del crecimiento vegetal. Este estudio tuvo como objetivo evaluar las respuestas morfológicas de plantas de Eucalipto inoculadas con Trichoderma harzianum UFT-25. El experimento se desarrolló en un diseño completamente al azar con dos tratamientos: plantas no inoculadas (control) y plantas inoculadas con T. harzianum UFT-25 con diez réplicas. El aislado se desarrolló en placas Petri de 50 mm que contenían papa, dextrosa y agar (PDA). Todas las placas se incubaron en una cámara de demanda bioquímica de oxígeno (DBO) a 25 ± 2 ºC con un fotoperiodo de 12 h durante siete días. Las plantas se inocularon rociando la cuarta, quinta y sexta hojas completamente expandidas con una suspensión de conidios de T. harzianum UFT-25. Las plantas control recibieron una aplicación de água destilada autoclavada conteniendo 0,02% (v/v) de Tween 80. El análisis de los resultados reveló una diferencia significativa entre los tratamientos en términos de altura, diámetro, número de hojas y ramas, masa seca y clorofila. T. harzianum UFT-25 estimuló un mayor crecimiento en las plantas inoculadas que las plantas control a los 15, 30, 45 y 60 días. Las plantas inoculadas han mostrado un aumento de 16,19% en la masa seca de los brotes y 51,65% en la masa seca de las raíces. Estos resultados abren nuevas vías para explorar el potencial de T. harzianum UFT-25, demostrando su eficiencia en la promoción del crecimiento de plantas de Eucalyptus. Así, el uso de este hongo puede contribuir a la reducción de insumos, como fungicidas y fertilizantes, promoviendo una mayor sostenibilidad en la producción forestal.
Citas
Aamir, M. et al. (2023). Transcriptomic characterization of Trichoderma harzianum T34 primed tomato plants: assessment of biocontrol agent induced host specific gene expression and plant growth promotion. BMC Plant Biology, 23, 1–38. https://doi.org/10.1186/s12870-023-04502-6
Abdenaceur, R. et al. (2022). Effective biofertilizer Trichoderma spp. isolates with enzymatic activity and metabolites enhancing plant growth. International Microbiology, 25, 817–829. https://doi.org/10.1007/s10123-022-00263-8
Akladious, S. A. & Abbas, S. M. (2014). Application of Trichoderma harzianum as a biofertilizer potential in maize growth. Journal of Plant Nutrition, 37, 30–49. https://doi.org/10.1080/01904167.2013.829100
Azarmi, R., Hajieghrari, B. & Giglou, A. (2011). Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology, 109(31), 5850–5855. https://doi.org/10.5897/AJB10.1600
Azevedo, G. B. et al. (2017). Effect of Trichoderma spp. on Eucalyptus camaldulensis clonal seedlings growth. Scientia Forestalis, 45, 343–352. DOI: dx.doi.org/10.18671/scifor.v45n114.10343
Bailey, B. A. et al. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46(1), 24–35. https://doi.org/10.1016/j.biocontrol.2008.01.003
Bailey, B. A., Strem, M. D. & Wood, D. (2009) Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycology Research, 113(12), 1365–1376. https://doi.org/10.1016/j.mycres.2009.09.004
Bandeira, J. B. et al. (2023). Endophytic colonization of five Trichoderma species and their effects on growth of Eucalyptus hybrid. Brazilian Journal of Microbiology, 54, 3113–3125. https://doi.org/10.1007/s42770-023-01112-0
Batista, K. O. M. et al. (2021). Effects of Trichoderma strigosellum in Eucalyptus urophylla development and leaf-cutting ant behavior. Journal of Fungi, 8(1), 1–14. https://doi.org/10.3390/jof8010015
Bernardes, T. G., Silveira, P. M. & Mesquita, M. A. M. (2010). Regulador de crescimento e Trichoderma harzianum aplicados em sementes de feijoeiro cultivado em sucessão a culturas de cobertura. Pesquisa Agropecuária Tropical, 40, 439–446.
Bjorkman, T., Blanchard, L. M. & Harman, G. E. (1998). Growth enhancement of shrunken-2 sweet corn when colonized with Trichoderma harzianum 1295–22: effect of environmental stress. Journal American Horticulture Science, 123, 35–40.
Bononi, L. et al. (2020). Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Science Reports, 10, 1–13. https://doi.org/10.1038/s41598-020-59793-8
Brotman, Y., Gupta, J. K. & Viterbo, A. (2010). Trichoderma. Current Biology, 20, 390–1. doi: 10.1016/j.cub.2010.02.042
Carvalho, D. D. et al. (2011). Biocontrol of seed pathogens and growth promotion of common bean seedlings by Trichoderma harzianum. Pesquisa Agropecuária Brasileira, 46, 822–8.
Carvalho Filho, M R, Mello, S C M, Santos, R P, & Menezes, J E (2008) Avaliação de isolados de Trichoderma na promoção de crescimento, produção de ácido indolacético in vitro e colonização endofítica de mudas de eucalipto. Brasília, Cenargen. pp 16 (Boletim de Pesquisa e Desenvolvimento, 226).
Castro, D. B. & Freitas, R. S. B. (2024). Induction of initial growth of common bean (Phaseolus vulgaris) with the use of Trichoderma spp. Elevag, Brazil, pp 1-13.
Chagas, A. F. Jr. et al. (2024). Trichoderma asperellum as growth promoter in Enterolobium contortisiliquum (Vell) Morong. Ciencia Florestal, 34(2), 1–17. https://doi.org/10.5902/1980509864187
Chagas, A. F. Jr. et al. (2021). Trichoderma como promotor de crescimento de mudas de eucaliptos. Journal of Biotechnology Biodiversity, 9(1), 60–72. https://doi.org/10.20873/jbb.uft.cemaf.v9n1.chagasjunior
Chagas, A. F. Jr. et al. (2020). Agronomic efficiency of soybean inoculated with Trichoderma and Purpureocillium in cerrado conditions, Tocantins, Brazil. Journal of Biotechnology Biodiversity, 8(4), 319–25. https://doi.org/10.20873/jbb.uft.cemaf.v8n4.chagasjr
Chagas, A.F . Jr. et al. (2022). Efficiency of Trichoplus (Trichoderma asperellum) as a plant growth promoter in soybean in the Cerrado field. Research Society and Developpment, 11(5), 1–9. https://doi.org/10.33448/rsd-v11i5.27970
Chagas, L.F.B. et al. (2016a). Bioprospecção de Trichoderma spp. sobre o crescimento micelial de Colletotrichum cliviae e C. truncatum. Brazilian Journal of Biology Sciience, 14, 238–242.
Chagas, L. F. B. et al. (2017b) Trichoderma na promoção do crescimento vegetal. Revista de Agricultura Neotropical, 4(3), 97–102. https://doi.org/10.32404/rean.v4i3.1529
Chagas, L. F. B. et al. (2017a). Rice growth influence by Trichoderma spp. with natural phosphate fertilization under greenhouse conditions. International Journal of Development Research, 7, 13147–13152.
Chagas, L. F. B. et al. (2016b). Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Brazilian Journal of Botany, 39, 437–445. https://doi.org/10.1007/s40415-015-0247-6
Chaverri, P., Gazis, R. O. & Samuels, G. J. (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycology, 103, 139–151.1https://doi.org/10.3852/10-078
Eneas, J. S. M. et al. (2022). Spatial variability of the dendrometric properties of Eucalyptus urophylla in the Cerrado Biome. Research Society and Development, 11(11), 1–12. https://doi.org/10.33448/rsd-v11i11.33638
Evans, H. C., Holms, K. A. & Thomas, S. E. (2003) Endophytes and mycoparasites associated with an indigenous forest tree, Theobromae gibereli, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycology Progress, 2, 149–160. https://doi.org/10.1007/s11557-006-0053-4
Ferreira, D. F. (2019). Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Bioma, 37, 529–535.
Fontenelle, A. D. B. et al. (2011). Growth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Protection, 30, 1492–1500. https://doi.org/10.1016/j.cropro.2011.07.019
Gana, L. P., Etsassala, N. G. E. R. & Nchu, F. (2023). Interactive effects of water deficiency and endophytic Beauveria bassiana on plant growth, nutrient uptake, secondary metabolite contents, and antioxidant activity of Allium cepa L. Journal of Fungi, 8(8), 1–13. https://doi.org/10.3390/jof8080874
Görgen, C. A. et al. (2009). Controle do mofobranco com palhada e Trichoderma harzianum 1306 em soja. Pesquisa Agropecuária Brasileira, 44, 1583–1590.
Harman, G. E. et al. (2004). Trichoderma species: opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56. https://doi.org/10.1038/nrmicro797
Ibá-Indústria Brasileira de Arvores (2023) Relatório anual Ibá. https://iba.org/datafiles/publicacoes/relatorios/relatorio-anual-iba2023-r.pdf. Accessed in 20 december 2024
Joseph, L. A. et al. (2023). Effect assessment of pesticides on the growth of Beauveria bassiana. Research Society and Development, 12(14), 1–9. https://doi.org/10.33448/rsd-v12i14.44676
Joseph, L. A. et al. (2022). Compatibility of fungicides with Trichoderma asperelloides and Azospirillum brasilense. Scientia Agrarian Paranaensis, 21(1), 30–5. https://doi.org/10.18188/sap.v21i1.29155
Li, R. C. et al. (2015). Solubilization of Phosphate and Micronutrients by Trichoderma harzianum and Its Relationship with the Promotion of Tomato Plant Growth. PLOS One, 6, 1-16. https://doi.org/10.1371/journal.pone.0130081
Liliana, M. B. et al. (2017). Response of Phaseolus vulgaris to inoculation to different dose of Trichoderma harzianum with nitrogen fertilizer reduced at 50%. Journal Selva Research and Society, 8, 135–144.
Liu, Q. et al. (2020). The Growth Promotion of Peppers (Capsicum annuum L.) by Trichoderma guizhouense NJAU4742-Based Biological Organic Fertilizer: Possible Role of Increasing Nutrient Availabilities. Microorganisms, 9, 1–23. https://doi.org/10.3390/microorganisms8091296
Maciel, J. C. et al. (2023). Development of comercial Eucalyptus clone in soil with indaziflam herbicide residues. Forests, 14(9), 19–33. https://doi.org/10.3390/f14091923
Marchetti, C. R. (2021) Controle Biológico de Sclerotinia sclerotiorum (Lib.) de bary e promoção de crescimento de plantas de feijão por cepas de Trichoderma spp. isoladas de plantas do Cerrado e Pantanal. Dissertation, Federal University of Mato Grosso do Sul
Milanesi, P. M. et al. (2013). Detecção de Fusarium spp. e Trichoderma spp. e antagonismo de Trichoderma spp. em soja sob plantio direto. Ciencias Agrárarias, 34, 3219–3234. https://doi.org/10.5433/1679-0359.2013v34n6Supl1p3219
Natsiopoulos, D. et al. (2022). Growth-Promoting and Protective Effect of Trichoderma atrobrunneum and T. simmonsii on Tomato against Soil-Borne Fungal Pathogens. Journal of Crop, 2, 202–217. https://doi.org/10.3390/crops2030015
Nunes, T. V. et al. (2023). Endophytic development of the entomopathogenic fungus Beauveria bassiana reduced the development of galls and adult emergence of Leptocybe invasa in susceptible Eucalyptus. Sustainability, 15(23), 1–13. https://doi.org/10.3390/su152316411
Oliveira, R. S. et al. (2022). Trichoderma in the phytopathogenic biocontrol. Bulgarian Journal of Agriculture Science, 28, 717–724.
Oliveira, R. S. et al. (2021). Biocontrol in vitro of Trichoderma spp. for pathogens Rhizoctonia solani, Fusarium oxysporum, and Curvularia lunata. Revista de Ciencias Agrárias, 44, 58–67.
Pachoute, J., Nascimento, V.L. & de Souza, D.J. (2021). Beauveria bassiana enhances the growth of cowpea plants and increases the mortality of Cerotoma arcuata. Current of Microbiology, 78, 3762–3769. https://doi.org/10.1007/s00284-021-02638-y.
Rawat, L. et al. (2011). Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil, 347, 387–400. https://doi.org/10.1007/s11104-011-0858-z
Resende, M. E. L. et al. (2004). Inoculação de sementes de milho utilizando o Trichoderma harzianum como promotor de crescimento. Ciencias Agrotecnologia, 28, 793–798. https://doi.org/10.1590/S1413-70542004000400010
Ribeiro, A. P. M. et al. (2023). Uso de Trichoderma na promoção de crescimento de mudas florestais. Research Society and Development, 12(1), 1–14. http://dx.doi.org/10.33448/rsd-v12i1.39138
Ribeiro, A. S. V. et al. (2023). Efficiency of Trichoderma and Bacillus subtilis as growth promoters in Eucalyptus Corymbia citriodora. Revista Observatorio de la Economia Latinoamericana, 21(11), 20380-20397. https://doi.org/10.55905/oelv21n11-097
Rocha, J. P. L. et al. (2023). Morphophysiological responses in Eucalyptus demonstrate the potential of the entomopathogenic fungus Beauveria bassiana to promote resistance against the Galling wasp Leptocybe invasa. Forests, 14(7), 1–11. https://doi.org/10.3390/f14071349
Salas-Marina, M. A. et al. (2011). Colonization of Arabidopsis roots by Trichoderma harzianum promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. European Journal of Plant Pathology, 131, 15–26. https://doi.org/10.1007/s10658-011-9782-6
Salla, T. D., Astarita, L. V. & Santarém, E. R. (2016) Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea. Planta, 243, 1055–1070. https://doi.org/10.1007/s00425-015-2460-8
Santos, J. L. et al. (2021). Volatile organic compounds produced by Trichoderma sp. morphophysiologically altered maize growth at initial stages. Australian Journal of Crop Science, 15, 215–223. doi: 10.21475/ajcs.21.15.02.p2605
Shanmugaiah, V. et al. (2009). Effect of single application of Trichoderma viride and Pseudomonas fluorescens on growth cotton plants. African Journal Agriculture and Research, 4, 1220–1225.
Silva, V. N. et al. (2011). Growth promotion and resistance induction against anthracnose in cucumber using Trichoderma spp. Pesquisa Agropecuária Brasileira, 46(12), 1609–1618. https://doi.org/10.1590/S0100-204X2011001200005
Singh, P. et al. (2023). Seed Biopriming with Trichoderma harzianum for Growth Promotion and Drought Tolerance in Rice (Oryza sativus). Agriculture Research, 12, 154–162. https://doi.org/10.1007/s40003-022-00641-8
Singh, V, Singh, P N, Yadav, R L, Awasthi, S K, Joshi, B B, Singh, R K, Lal, R J, Duttamajumder, S K (2010) Increasing the efficacy of Trichoderma harzianum for nutrient uptake and control of red rot in sugarcane. Journal of Horticulture and Forestry, 2(4), 66–71.
Subramaniam, S. et al. (2022). Role of Trichoderma in Plant Growth Promotion. In: Amaresan N. et al. (eds). Advances in Trichoderma Biology for Agricultural Applications. Fungal Biolology, 23, 257–280.https://doi.org/10.1007/978-3-030-91650-3
Vukelic, I.,D. et al. (2021). Effects of Trichoderma harzianum on Photosynthetic Characteristics and Fruit Quality of Tomato Plants. International Journal of Molecular Sciences, 22(13), 1-16. https://doi.org/10.3390/ijms22136961
Zaw, M. & Matsumoto, M. (2020) Plant growth promotion of Trichoderma virens, Tv911 on some vegetables and its antagonistic effect on Fusarium wilt of tomato. Environmental Control in Biology, 58(1), 7–14. https://doi.org/10.2525/ecb.58.7
Zhang, F. et al. (2013). Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization. Plant Soil, 368, 433–444. https://doi.org/10.1007/s11104-012-1519-6
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Louis Antoniel Joseph; Manoucheca Jean; Ilgentche Appolon; Judson Pierre; Kerley-Vivaldi Jean; Frantz Fils-Aimé; Bento Gil Uane

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.