Effects of nanoemulsion and essential oil from the leaves of Ocotea elegans against Dysdercus peruvianus

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8424

Keywords:

Acetylcholinesterase; Cotton stainer; Gossypium sp; Green pesticide; Insect growth regulators; Lauraceae.

Abstract

The Dysdercus peruvianus Guérin-Méneville is commonly known as the cotton stainer bug. In this study, it was evaluated the insecticide activity and mode of action of the essential oil from leaves of Ocotea elegans Mez and its nanoemulsion against D. peruvianus. Leaves of O. elegans were extracted by hydrodistillation. The essential oil obtained was analyzed by gas chromatography coupled with electron impact mass spectrometry and flame ionization detector. The essential oil toxicity measured by lethal dose 50 (LD50) and survival rate of insects were recorded. Lastly, an assay was carried out to assess the inhibition of the enzyme acetylcholinesterase to determine a possible mechanism of action of insecticidal activity. The sesquiterpene sesquirosefuran was the major compound detected and corresponds to 92% of the components of the essential oil. The nanoemulsion more stable showed hydrophilic lipophilic balance (HLB 11.74), droplet size 92±1.80 nm, and polydispersity index (PDI of 0.215±0.015). After the topical application of the O. elegans essential oil, significant decreases in the survival of D. peruvianus occurred in a dose-response manner with LD50 = 162.18 μg and the survival rate of the nanoemulsion in D. peruvianus was 10.0±5.47, a better value than in pure essential oil. The acetylcholinesterase inhibition presented inhibition concentration (IC50 = 1.37mg/mL) and mixed type of inhibition. This indicates that the essential oil of leaves from O. elegans and its nanoemulsion are promising candidates for use in integrated pest management programs.

References

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. Illinois: Allured Publishing Corporation.

Albuquerque, R. D. D. G.; Thietbohl, L. A. C.; Fernandes, C. P.; Couteiro, P. P.; Eiriz, D. N.; Santos, M. G.; et al. (2012). Chemical and biological study of essential oil from Eugenia pruniformis Cambess, an endemic species from Brazilian Atlantic forest. Latin American Journal of Pharmacy, 31(6), 830-834.

Araki, S. & Butsugan, Y. (1982). Selective syntheses of dendrolasin and sesquirosefuran by the coupling of 3-furylmethylmagnesium bromide with geranyl diethylphosphate. Chemistry Letters, 11 (2), 177-178.

Armitage, P.; Berry, G. & Matthews, J. N. S. (2002). Comparision of several groups and experimental design. In P. Armitage (Ed.), Statistical methods in medical research (pp. 208-256). Oxford: Blackwell Science Publishing.

Arruda, M.; Viana, H.; Rainha, N.; Neng, N. R.; Rosa, J. S.; Nogueira, J. M. F.; et al. (2012). Anti-acetylcholinesterase and antioxidant activity of essential oils from Hedychium gardnerianum Sheppard ex Ker-Gawl. Molecules, 17, 3082- 3092. doi: 10.3390/molecules17033082

Bland, J. M. & Altman, D. G. (2004). Statistics notes: The Logrank test. British Medical Journal, 328, 1073. https://doi.org/10. 1136/bmj.328.7447.1073 PMID: 15117797

Brotto, M. L.; Cervi, A. C. & dos Santos, É. P. (2013). O Gênero Ocotea (Lauraceae) no Estado do Paraná, Brasil. Rodriguésia, 64 (3), 495-525. https://doi.org/ 10.1590/S2175-78602013000300004

Budki, P.; Rani, S. & Kumar, V. (2012). Persistence of circannual rhythms under constant periodic and aperiodic light conditions: sex differences and relationship with the external environment. Journal of Experimental Biology, 215, 3774-3785. https:/doi.org/ 10.1242/jeb.065581

Castillo-Sanchez, L. E.; Jiménez-Osornio, J. J. & Delgado-Herrera, M.A. (2010). Secondary metabolites of the Annonaceae, Solanaceae and Meliaceae families used as biological control of insects. Tropical and Subtropical Agroecosystems, 12, 445-462.

Chaudhry, M. R. (2010). Cotton production and processing. In J. Müssig (Ed.), Industrial applications of natural fibres: structure, properties and technical applications (pp 219-236). Bremen: A John Willey and Son.

Cunha Bastos, V. L. F.; Cunha Bastos, J.; Lima, J. S. & Castro Faria, M. V. (1991). Brain acetylcholinesterase as an in vitro detector of organophosphorus and carbamates insecticides in water. Water Research, 25 (7), 835-840. https://doi.org/10.1016/0043-1354(91)90164-L

Ellman, G. L.; Courtney, K. D.; Andres Jr, V. & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95.

El-Sayed, A. M. (2019). The Pherobase: Database of Pheromones and Semiochemicals. http://www.pherobase.com. Acessed 22 April 2020.

Fernandes, C. P.; Xavier, A.; Pacheco, J .P. F.; Santos, M. G.; Mexas, R.; Ratcliffe, N .A.; et al. (2013). Laboratory evaluation of the Manilkara subsericea (Mart.) Dubard extracts and triterpenes on development of Dysdercus peruvianus and Oncopeltus fasciatus. Pest Management Science, 69, 292-301. https://doi.org/ 10.1002/ps.3388

Fernandes, C. P.; Almeida, F. B.; Silveira, A. N.; Gonzalez, M. S.; Mello, C. B.; Feder, D.; et al. (2014). Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. Journal of Nanobiotechnology, 12 (1), 1-9. https://doi.org/10.1186/1477-3155-12-22

Figueiredo, A.; Nascimento, L. M.; Lopes, L. G.; Giglioti, R.; Albuquerque, R. D. D. G.; Santos, M. G., et al. (2018). First report of the effect of Ocotea elegans essential oil on Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 252, 131–136. https://doi.org/10.1016/j.vetpar.2018.02.018

Gonzalez, M. S.; Lima, B. G.; Oliveira, A. F. R.; Nunes, D. D.; Fernandes, C. P.; Santos, M. G.; et al. (2014). Effects of essential oil from leaves of Eugenia sulcata on the development of agricultural pest insects. Brazilian Journal of Pharmacognosy 24 (4), 413-418. https://doi.org/10.1016/j.blp.2014.05.003

Gottlieb, O. R. (1972). Chemosystematics of Lauraceae. Phytochemistry, 11 (5), 1537-1570

Govindarajan, M. & Benelli, G. (2016) Eco-friendly larvicides from Indian plants: effectiveness of lavandulyl acetate and bicyclogermacrene on Malaria, Dengue and Japanese Encephalitis mosquito vectors. Ecotoxicology Environmental Safety, 133, 395–402. https://doi.org/10.1016/j.ecoenv.2016.07.035

Griffin, W. C. (1949). Classification of surface-active agents by HLB. Journal of Society Cosmetic Chemistry, 1, 311–326.

Harshman, L. G.; Song, K. D.; Casas, J.; Schuurmans, A.; Kuwano, E.; Kachman, S. D.; et al. (2010). Bioassays of compounds with potential juvenoid activity on Drosophila melanogaster: juvenile hormone III, bisepoxide juvenile hormone III and methyl farnesoates. Journal of Insect Physiology, 56 (10), 1465-70. https://doi.org/10.1016/j.jinsphys.2010.06.003

Hayashi, N. & Komae, H. (1980). Chemistry and distribution of sesquiterpene furans in Lauraceae. Biochemical Systematics and Ecology, 8 (4), 381-383. https://doi.org/10.1016/0305-1978(80)90041-1

Ho, H. & Millar, J. G. (2001). Identification and synthesis of male-produced sex pheromone components of the stink bugs Chlorochroa ligata and Chlorochroa uhleri. Journal of Chemical Ecology, 27, 2067–2095. https://doi.org/10.1023/A:1012247005129

Homola, E. & Chang, E. S. (1997). Methyl farnesoate: Crustacean juvenile hormone in search of function. Comparative Biochemistry and Physiology Part B: Journal of Biochemistry and Molecular Biology, 117, 347-356. https://doi.org/10.1016S0305-0491(96)00337-9

Isman, M. B. (2006). Botanical insecticides, deterrents and repellents in modern agricultural and an increasingly regulated world. Annual Review of Entomology, 51, 45-66. https://doi.org/ 10.1146/annurev.ento.51.110104.151146

Jaiswal, M.; Dudhe, R. & Sharma, P.K. (2015). Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech, 5 (2), 123-7. https://doi.org/10.1007/s13205-014-0214-0

Jemâa, J. M. B. (2014). Essential oil as a source of bioactive constituents for the control of insect pests of economic importance in Tunisia. Medicinal & Aromatic Plants, 3 (2), 1-7. https://doi.org/10.4172/2167-0412.1000158

Kim, S-I. & Lee, D-W. (2014). Toxicity of basil and orange essential oil and their components against two Coleopteran stored products insect pest. Journal of Asia-Pacific Entomology 17, 13-17. https://doi.org/10.1016/j.aspen.2013.09.002

Koul, O.; Walia, S. & Dhaliwal, G. S. (2008). Essential oils as green pesticides: potential and constraints. Biopesticides International, 4, 63-84.

Kropf, M. S.; Quinet, A. & Andreata, R. H. P. (2015). Lauraceae das Restingas do Estado do Rio de Janeiro, Brasil. Iheringia Série Botânica, 70 (2), 287-308.

Kunert, G.; Trautsch, J. & Weisser, W. W. (2007). Density dependence of the alarm pheromone effect in pea Aphids, Acyrthosiphon pisum (Sternorrhyncha: Aphididae). European Journal of Entomology, 104, 47–50. https://doi.org/10.14411/eje.2007.007

Lima, J. S.; Bastos Neto, J. C.; Cunha Bastos, V. L. F.; Cunha, J. C.; Moraes, F. F. M.; Ferreira, M. F. A.; et al. (1996). Methyl parathion activation by a partially purified rat brain fraction. Toxicology Letters, 87, 53-60.

Liu, X. C.; Cheng, J.; Zhao, N. N. & Liu, Z. L. (2014). Insecticidal activity of essential oil of Cinnamomum cassia and its main constituent, trans-cinnamaldehyde, against the booklice, Liposcelis bostrychophila. Tropical Journal of Pharmaceutical Research, 13, 1697-1702. https://doi.org/10.4314/tjpr.v13i10.18

López, M. D. & Pascual-Villalobos, M. J. (2010). Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Industrial Crops and Products, 31, 284-288. https://doi.org/ 10.1016/j.indcrop.2009.11.005

Maleck, M.; Santos, F. C. C.; Serdeiro, M. T.; Guimaraes, A. E.; Ferreira, B.; Gunaydin, K.; et al. (2013). Khellin: A furanochromone with toxicity against Oncopeltus fasciatus (Hemiptera) and Aedes aegypti (Diptera). Journal of Natural Pharmaceuticals, 4 (1), 32-36. https://doi.org/10.4103/2229-5119.110348

Miyazawa, M. & Yamafuji, C. (2006). Inhibition of acetylcholinesterase activity by tea tree oil and constituent terpenoids. Flavour and Fragrance Journal, 21, 198-201. https://doi.org/10.1002/ffj.1580

Nesci, A.; Montemarani, A.; Passone, M. A. & Etcheverry, M. (2011). Insecticidal activity of synthetic antioxidants, natural phytochemicals, and essential oils against an Aspergillus section Flavi vector (Oryzaephilus surinamensis L.) in microcosm. Journal of Pest Science, 84, 107-115. https://doi.org/ 10.1007/s10340-010-0333-2

Ostertag, F.; Weiss, J. & McClements, D.J. (2012). Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. Journal of Colloid Interface Science, 388, 95–102. https://doi.org/10.1016/j.jcis.2012.07.089

Petroski, R. J.; Tellez, M. R. & Beh, R. W. (2005). Semiochemicals in pest and weed control: an introduction. In A.C.S. Symposium Series, Semiochemicals in pest and weed control (pp. 1-7). Washington, DC: American Chemical Society.

Rafiq, M.; Shah, S. I. A.; Jan, I. R. M. T.; Khan, I. R. & Shah, S. A. S. (2014). Efficacy of different groups of insecticides against cotton stainer (Dysdercus koenigii) in field conditions. Pakistan Entomologist, 36 (2), 105-10.

Rattan, R. S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29, 913-920. https:doi.org/ 10.1016/j.cropo.2010.05.008

Saleem, S.; Hasan, M. U. I. H.; Sagheer, M. & Sahi, S. T. (2014). Insecticidal activity of essential oils of four medicinal plants against different stored grain insects. Pakistan Journal of Zoology, 46 (5), 1407-1414.

Schaefer, C. W. (2015). Cotton stainers (Pyrrhocoridae) and bordered plant bugs (Largidae). In A. R. Panizzi, & J. Grazia (Eds), True bugs (Heteroptera) of the neotropics (pp. 515-536). Netherlands: Springer.

Tietbohl, L. A. C.; Barbosa, T.; Fernandes, C. P.; Santos, M. G.; Machado, F. P.; Santos, K. T.; et al. (2014). Laboratory evaluation of the effects of essential oil of Myrciaria floribunda leaves on the development of Dysdercus peruvianus and Oncopeltus fasciatus. Brazilian Journal of Pharmacognosy, 24, 316-321. https://doi.org/ 10.1016/j.bjp.2014.07.009

Van, O. A. M.; Gut, J.; Harrewijn, P. & Piron, P. M. G. (1990). Role of farnesene isomers and other terpenoids in the development of different morphs and forms of the Aphids Aphis fabae and Myzus persicae. Acta Phytopathologica et Entomologica Hungarica, 25, 331–342.

Wang, Y.; You, C. X.; Yang, K.; Wu, Y.; Chen, R.; Zhang, W. J.; et al. (2015). Bioactivity of essential oil of Zingiber purpureum rhizomes and its main compounds against two stored product insects. Journal of Economic Entomology, 108 (3), 925-932. https//doi.org/10.1093/jee/tov030

Zandi-Sohani, N.; Hojjati, M. & Carbonell-Barrachina, Á. A. (2012). Insecticidal and repellent activities of the essential oil of Callistemon citrinus (Myrtaceae) against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Neotropical Entomology, 42 (1), 89-94. https:/doi.org/10.1007/s13744-012-0087z

Downloads

Published

19/09/2020

How to Cite

NASCIMENTO, L. M. .; APOLINARIO, R. .; MACHADO, F. P. .; CORREA, A. L. .; CALDAS, G. R. .; RUPPELT, B. M. .; SOUZA, K. F. C. .; GOUVEIA, G. .; BURTH, P. .; FALCAO, D. Q. .; SANTOS, M. G. .; AZAMBUJA , P. .; GONZALEZ, M. S. .; MELLO , C. B.; ROCHA, L. .; FEDER, D. Effects of nanoemulsion and essential oil from the leaves of Ocotea elegans against Dysdercus peruvianus. Research, Society and Development, [S. l.], v. 9, n. 10, p. e909108424, 2020. DOI: 10.33448/rsd-v9i10.8424. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8424. Acesso em: 5 jan. 2025.

Issue

Section

Agrarian and Biological Sciences