Drying of yeast biomass Rhodotorula glutinis in foam-mat drying

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9437

Keywords:

Fermentative process; Water activity; Ascorbic acid.

Abstract

Yeasts, especially the genus Rhodotorula, have the capacity to produce considerable amounts of compounds with high added value, such as carotenoid pigments and lipids, in addition to proteins. Thus, the objective of this work was to study the drying in foam layer (foam-mat drying) of the biomass of the yeast Rhodotorula glutinis to obtain the powder. The influence of temperature, concentration of sparkling wine and stirring time, drying time and final humidity was evaluated. The physical characterization of the foam was also evaluated: stability; density; air incorporation and expansion. The production of biomass from Rhodotorula glutinis (CTT 2182) had an average yield of 60 g per batch. In the physical characterization of the foam, the agitation time was responsible for the best results for density, volumetric expansion and air incorporation. The foam stability was favored by the increase in the concentration of the sparkling wine. In drying, temperature was the only variable that had an influence on drying time. In the physico-chemical characterizations of the biomass powder of the yeast Rhodotorula glutinis, an average theoretical yield was obtained for the experiments of the central point of 22.36%, an average ascorbic acid content of 41.36 mg / 100 g of powder and solubility greater than 20% in all conditions studied. In the analysis of water activity, all experiments obtained values above 0.6, thus ensuring the viability of the product produced. The drying process in foam- mat drying of the biomass of the yeast Rhodotorula glutinis proved to be viable.

References

Hernández-Almanza, A., Montanez, J. C., Aguilar-Gonzalez, M. A., Martínez-Ávila, C., Rodríguez-Herrera, R., & Aguilar, C. N. (2014). Rhodotorula glutinis as source of pigments and metabolites for food industry. Food Bioscience, 5, 64-72. https://doi.org/10.1016/j.fbio.2013.11.007

Araújo, C. D. S., Macedo, L. L., Vimercati, W. C., Saraiva, S. H., Oliveira, A. D. N., & Teixeira, L. J. Q. (2017). Cinética de secagem de acerola em leito de espuma e ajuste de modelos matemáticos. Brazilian Journal of Food Technology, 20. https://doi.org/10.1590/1981-6723.15216

Aksu, Z., & Eren, A. T. (2005). Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source. Process Biochemistry, 40 (9), 2985-2991. https://doi.org/10.1016/j.procbio.2005.01.011

AOAC - Association of Official Analytical Chemists. Oficial Methods of Analysis. (1997), Williams, S. (ed) 14.ed. Arlington. 1141 p.

Barbosa, A. F. S. (2017) cultivo de Rhodotorula glutinis em manipueira para a produção de suplemento vitamínico e proteico. (Dissertação de Mestrado). Universidade Federal da Bahia- UFBA, Bahia, BA, Brasil. Recuperado de https://biocienciasims.ufba.br/sites/biocienciasims.

ufba.br/files/ana_flavia_souto_barbosa.pdf

Benassi, M. D. T., & Antunes, A. J. (1988). A comparison of metaphosphoric and oxalic acids as extractants solutions for the determination of vitamin C in selected vegetables. Arq. Biol. Tecnol, 507-13.

Bhosale, P., & Gadre, R. V. (2001). β-carotene production in sugarcane molasses by a Rhodotorula glutinis mutant. Journal of Industrial Microbiology and Biotechnology, 26(6), 327-332. https://doi.org/10.1038/sj.jim.7000138

Bortoli, D. A. D. S., dos Santos, F., Stocco, N. M., Orelli Jr, A. A., Ton, A., Neme, F. F., & do Nascimento, D. D. (2013). Leveduras e produção de cervejas-Revisão. Bioenergia em Revista: Diálogos, 31 (3), 2236-9171), 45-58. Recuperado de http://www.fatecpirac icaba.edu.br/revista/index.php/bioenergiaemrevista/article/view/77

Brock, J., Nogueira, M. R., Zakrzevski, C., Corazza, F. C., Corazza, M. L., & Oliveira, J. V. (2008). Determinação experimental da viscosidade e condutividade térmica de óleos vegetais. Ciência e Tecnologia de Alimentos, 28(3), 564-570. http://dx.doi.org/10.1590/S0101-20612008000300010

Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies, 6, 420-428. https://doi.org/10.1016/j.ifset.2005.05.003

Celestino, S. M. C. (2010). Princípios de secagem de alimentos. Embrapa cerrados-documentos (infoteca-e).

Cheng, Y. T., & Yang, C. F. (2016). Usando a cepa Rhodotorula mucilaginosa para produzir carotenóides a partir de resíduos alimentares. Journal of the Taiwan Institute of Chemical Engineers, 61, 270-275. https://doi.org/10.1016/j.jtice.2015.12.027

Eastman, J. E., & Moore, C. O. (1984). Cold water soluble granular starch for gelled food composition. U.S. Patent 4465702.

Feitosa, R. M., Figueirêdo, R. M. F., Queiroz, A. J. M., Lima, F. C. S., & Oliveira, E. N. A. (2017). Drying and characterization of myrtle pulp. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(12), 858-864. http://dx.doi.org/10.1590/1807-1929/agriambi.v21n12p858-864

Rima, H., Steve, L., & Ismail, F. (2012). Propriedades antimicrobianas e probióticas das leveduras: das aplicações fundamentais às novas. Fronteiras em microbiologia, 3 , 421.

https://doi.org/10.3389/fmicb.2012.00421

Hiatt, A. N., Taylor, L. S., & Mauer, L. J. (2010). Influence of simultaneous variations in temperature and relative humidity on chemical stability of two vitamin C forms and implications for shelf life models. Journal of agricultural and food chemistry, 58(6), 3532-3540. doi:10.1021/jf903342f

Abd Karim, A., & Wai, C. C. (1999). Foam-mat drying of starfruit (Averrhoa carambola L.) puree. Stability and air drying characteristics. Food Chemistry, 64(3), 337-343. https://doi.org/10.1016/S0308-8146(98)00119-8

Kandasamy, P., Varadharaju, N., Kalemullah, S., & Ranabir, M. (2012). Production of papaya powder under foam-mat drying using methyl cellulose as foaming agent. Asian Journal of Food and Agro-Industry, 5(5), 374-387. https://doi.org/10.1016/j.tibtech.2008.07.002

Malisorn, C., & Suntornsuk, W. (2008). Otimização da produção de β-caroteno por Rhodotorula glutinis DM28 em salmoura fermentada de rabanete. Bioresource Technology, 99 (7), 2281-2287. https://doi.org/10.1016/j.biortech.2007.05.019

Pangestuti, R., & Kim, S. K. (2011). Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of functional foods, 3(4), 255-266. https://doi.org/10.1016/j.jff.2011.07.001

Park, P. K., Cho, D. H., Kim, E. Y., & Chu, K. H. (2005). Optimization of carotenoid production by Rhodotorula glutinis using statistical experimental design. World Journal of Microbiology and Biotechnology, 21(4), 429-434. doi: 10.1007/s11274-004-1891-3

Perreira, T. S., Pinheiro.W. S., Negreiros, J. K. S., Sousa, C. C., Cavalcante, J. A. (2017). Caracterização de clara de ovo e do seu pó obtido por secagem em camada de espuma (foam-mat drying). Revista Brasileira de Produtos Agroindustriais, Campina Grande, 19(2), 167-175. Recuperado de http://www.deag.ufcg.edu.br/rbpa/rev192/rev1926.pdf

Sauter, E. A., Montoure, J. E. (1972). The relationship of lysozyme content of egg white to volume and stability of foams. Journal of Food Science, 37(6), 918-920. https://doi.org/10.1111/j.1365-2621.1972.tb03703.x

Published

06/11/2020

How to Cite

PINHEIRO, W. S. .; SILVA, F. L. H. da; CAVALCANTE, J. de A. .; SANTOS, S. F. de M.; MELO, D. J. N. de; GADELHA, B. S. O.; SANTOS, L. V. de A. Drying of yeast biomass Rhodotorula glutinis in foam-mat drying . Research, Society and Development, [S. l.], v. 9, n. 11, p. e1129119437, 2020. DOI: 10.33448/rsd-v9i11.9437. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9437. Acesso em: 4 jan. 2025.

Issue

Section

Engineerings