Importancia de las lectinas en virología: una revisión integradora
DOI:
https://doi.org/10.33448/rsd-v9i11.10083Palabras clave:
Lectinas; Virología; Antivírica.Resumen
Las lectinas son un grupo especial de proteínas con características peculiares, estas se unen a los carbohidratos de origen no inmunológico. Varias lectinas ya se han purificado y aislado en la naturaleza, incluso en humanos, desempeñan papeles muy importantes, especialmente en el proceso de inmunidad innata y señalización celular. A partir de esta información y dada la importancia de estudiar esta clase de proteínas, esta revisión integradora propone demostrar los principales referentes en los estudios de las lectinas y sus posibles actividades dentro del campo de la virología, siendo este objeto de estudio una herramienta importante en el tratamiento de infecciones virales. Los datos muestran que en los últimos 5 años (2015-2020) no solo se realizó el descubrimiento de nuevas lectinas con potenciales antivirales, sino estudios de mejora estructural y modificación del vínculo vector / virus cuando corresponda. Se concluye que las lectinas se acercan a una alternativa viable de estudio y conocimiento en el tratamiento de diversas enfermedades causadas por virus en diferentes clases y especies animales.
Citas
Adelman, Z. N.; Myles, K. M. The C-type lectin domain gene family in Aedes aegypti and their role in arbovirus infection. Viruses, 10(7).
Ahmed, Z., et al. The role of human dendritic cells in HIV-1 infectionJournal of Investigative DermatologyNature Publishing Group, 5.
Akkouh, O. et al. Lectins with Anti-HIV Activity: A Review. Molecules, 20(1), 648–668.
Ayouba, A. et al. Interactions of plant lectins with the components of the bacterial cell wall peptidoglycan. Biochemical Systematics and Ecology, 22(2), 153–159.
Barroso-Neto, I. L. et al. Structural analysis of a Dioclea sclerocarpa lectin: Study on the vasorelaxant properties of Dioclea lectins. International Journal of Biological Macromolecules, 82, 464–470.
Batool, K. et al. C-type lectin-20 interacts with ALP1 receptor to reduce cry toxicity in aedes aegypti. Toxins, 10(10).
Bermejo-Jambrina, M., et al. C-type lectin receptors in antiviral immunity and viral escapeFrontiers in ImmunologyFrontiers Media S.A.
Chang, Y. S., et al. Cloning and expression of the lectin gene from the mushroom Agrocybe aegerita and the activities of recombinant lectin in the resistance of shrimp white spot syndrome virus infection. Developmental and Comparative Immunology, 90, 1–9.
Charungchitrak, S. et al. Antifungal and antibacterial activities of lectin from the seeds of Archidendron jiringa Nielsen. Food Chemistry, 126(3), 1025–1032.
Favier, A. L., et al. Involvement of surfactant protein D in ebola virus infection enhancement via glycoprotein interaction. Viruses, 11(1).
Fu, L. et al. Plant lectins: Targeting programmed cell death pathways as antitumor agents. The International Journal of Biochemistry & Cell Biology, 43(10), 1442–1449.
Hassan, M. A. A. et al. Mushroom lectins: Specificity, structure and bioactivity relevant to human diseaseInternational Journal of Molecular SciencesMDPI AG.
Hopper, J. T. S. et al. The Tetrameric Plant Lectin BanLec Neutralizes HIV through Bidentate Binding to Specific Viral Glycans. Structure, 25(5), 773- 782.
Idris, F., Muharram, S. H., DIAH, S. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapyArchives of VirologySpringer-Verlag Wien.
Lagarda-Diaz, I. et al. Insecticidal Action of PF2 Lectin from Olneya tesota (Palo Fierro) against Zabrotes subfasciatus Larvae and Midgut Glycoconjugate Binding. Journal of Agricultural and Food Chemistry, 57(2), 689–694.
Lagarda-Diaz, I., Guzman-Partida, A., Vazquez-Moreno, L. Legume Lectins: Proteins with Diverse Applications. International Journal of Molecular Sciences, 18(6), 1242.
Li, L. et al. Griffithsin inhibits porcine reproductive and respiratory syndrome virus infection in vitro. Archives of Virology, 163(12), 3317–3325.
Liu, Y. et al. The roles of direct recognition by animal lectins in antiviral immunity and viral pathogenesisMoleculesMDPI AG.
Liu, Y. M., et al. A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. Cell Reports, 32(6), 108016.
Machala, E. A. et al. Restriction of Human Cytomegalovirus Infection by Galectin-9. Journal of Virology, 93(3).
Mason, C. P., Tarr, A. W. Human lectins and their roles in viral infectionsMoleculesMDPI AG.
Mazalovska, M., Kouokam, J. C. Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfectionsBioMed Research InternationalHindawi Limited.
Mishra, A., et al. Structure-function and application of plant lectins in disease biology and immunity. Food and Chemical Toxicology, 134, 110827.
Monteiro, J. T. et al. The CARD9-associated C-type lectin, mincle, recognizes la crosse virus (LACV) but plays a limited role in early antiviral responses against LACV. Viruses, 11(3).
Monteiro, J. T., Lepenies, B. Myeloid C-type lectin receptors in viral recognition and antiviral immunityVirusesMDPI AG.
Moreira, R. et al. Plant lectins: Chemical and biological aspects. Memórias do Instituto Oswaldo Cruz, 86(2), 211–218.
Osterne, V. J. S. et al. Structural characterization of a lectin from Canavalia virosa seeds with inflammatory and cytotoxic activities. International Journal of Biological Macromolecules, 94, 271–282.
Pereira, A. S. et al. Método Qualitativo, Quantitativo ou Quali-Quanti. [s.l: s.n.].
Peumans, W. J., Van Damme, E. Lectins as Plant Defense Proteins. Plant Physiology, 109(2), 347–352.
Sharon, N.; LIS, H. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 14(11), 53–62.
Siqueira, A. S. et al. Genomic screening of new putative antiviral lectins from Amazonian cyanobacteria based on a bioinformatics approach. Proteins: Structure, Function and Bioinformatics, 86(10), 1047–1054.
Swanson, M. D. et al. Engineering a Therapeutic Lectin by Uncoupling Mitogenicity from Antiviral Activity. Cell, 163(3), 746–758.
Tani, H. et al. Characterization of Glycoprotein-Mediated Entry of Severe Fever with Thrombocytopenia Syndrome Virus. Journal of Virology, 90(11), 5292–5301.
White, M. R. et al. Collectins, H-ficolin and LL-37 reduce influence viral replication in human monocytes and modulate virus-induced cytokine production. Innate Immunity, 23(1), 77–88.
Woodrum, B. W. et al. A designed “Nested” dimer of cyanovirin-N increases antiviral activity. Viruses, 8(6).
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Rafael Barbosa de Moura; Francisco Nascimento Pereira Júnior; Giuliann Felipe Almeida Santos; Antonia Railene de Souza Rodrigues
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.