Caracterización in silico de isoformas del gen de lacasa de Basidiomycetes comestibles y medicinales

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i12.10388

Palabras clave:

Agaricus; Isogenes; Lentinus; Pleurotus; Hongos de pudrición blanca.

Resumen

Las lacasas son parte de la familia de enzimas ligninolíticas y desempeñan funciones esenciales en varios procesos biológicos de hongos filamentosos, incluso la formación de cuerpos fructíferos y la degradación de la lignina. El objetivo general fue identificar y caracterizar genes del lacasa in silico de varias cepas de Basidiomycetes. La prueba de oxidación con guayacol aplicada permitió la selección de siete de las 11 cepas con actividad ligninasa, que se utilizaron para la extracción del ADN y la amplificación de la región de conexão al cobre. Todas las cepas seleccionadas produjeron un único amplicón de aproximadamente 450 pb que fueron posteriormente secuenciados. El análisis de la secuencia sugirió la presencia de una nueva subdivisión de los genes de lacasa. El análisis de agrupamiento confirmó la existencia de dos grupos: el cluster A con seis cepas y el singleton B con la cepa U8-11. Las predicciones estructurales de la proteína U8-11 fueron diferentes en comparación con otras proteínas descritas en nuestro estudio debido a la ausencia del motif ALAVIN y, por lo tanto, la secuencia de aminoácidos U8-11 se separó en un cluster diferente.

Citas

Baldrian, P. (2006). Fungal laccases - occurrence and properties. FEMS Microbiology Reviews 30 (2), 215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x

Bleve, G., Lezzi, C., Mita, G., Rampino, P., Perrotta, C., Villanova, L., & Grieco, F. (2008). Molecular cloning and heterologous expression of a laccase gene from Pleurotus eryngii in free and immobilized Saccharomyces cerevisiae cells. Applied Microbiology and Biotechnology, 79, 731. https://doi.org/10.1007/s00253-008-1479-1

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I.N., & Bourne, P.E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235

Cannatelli, M. D., & Ragauskas, A. J. (2017). Two decades of laccases: advancing sustainability in the chemical industry. The Chemical Record, 17(1), 122-140. https://doi.org/10.1002/tcr.201600033

Cázares-García, S. V., Vázquez-Garciduenas, M. S., & Vázquez-Marrufo, G. (2013). Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. PLOS One, 8(1), e55295. https://doi.org/10.1371/journal.pone.0055295

Chojnacki, S., Cowley, A., Lee, J., Foix, A., & Lopez, R. (2017). Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Research, 45 (W1), W550-W553. https://doi.org/10.1093/nar/gkx273

Garnier, J., Gibrat, J. F., & Robson, B. (1996). GOR method for predicting protein secondary structure from amino acid sequence. Methods in Enzymology, 266, 540-553. https://doi.org/10.1016/S0076-6879(96)66034-0

Grandes-Blanco, A. I., Tlecuitl-Beristain, S., Díaz, R., Sánchez, C., Téllez-Téllez, M., Márquez-Domínguez, L., Santos-López, G., & Diaz-Godinez, G. (2017). Heterologous expression of laccase (LACP83) of Pleurotus ostreatus. BioResources, 12(2), 3211-3221. https://doi.org/10.15376/biores.12.2.3211-3221

Gupta, V., Balda, S., Gupta, N. K., Capalashe, N., & Sharma, P. (2019). Functional substitution of domain 3 (T1 copper center) of a novel laccase with Cu ions. International Journal of Biological Macromolecules, 123, 1052-1061. https://doi.org/10.1016/j.ijbiomac.2018.11.174

Hall, T. (2011). BioEdit: an important software for molecular biology. GERF Bulletin of Bioscience, 2 (1), 60-61.

Jiao, X., Li, G., Wang, Y., Nie, F., Cheng, X., Abdullah, M., Lin, Y., & Cai, Y. (2018). Systematic analysis of the Pleurotus ostreatus laccase gene (PoLac) family and functional characterization of PoLac2 involved in the degradation of cotton-straw lignin. Molecules, 23 (4), 880. https://doi.org/10.3390/molecules23040880

Kataoka, K., Hirota, S., Maeda, Y., Kogi, H., Shinohara, N., Sekimoto, M., & Sakurai, T. (2010). Enhancement of laccase activity through the construction and breakdown of a hydrogen bond at the type I copper center in Escherichia coli CueO and the deletion mutant Δα5− 7 CueO. Biochemistry, 50 (4), 558-565. https://doi.org/10.1021/bi101107c

Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20 (4), 1160-1166. https://doi.org/10.1093/bib/bbx108.

Kiiskinen, L‐L., Rättö, M., & Kruus, K. (2004). Screening for novel laccase‐producing microbes. Journal of Applied Microbiology, 97 (3), 640-646. https://doi.org/10.1111/j.1365-2672.2004.02348.x

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120. https://doi.org/10.1007/BF01731581

Kües, U., & Rühl, M. (2011). Multiple multi-copper oxidase gene families in basidiomycetes-what for? Current Genomics, 12 (2), 72-94. https://doi.org/10.2174/138920211795564377

Lira, R. K. de S., & Orlanda, J. F. F. (2020). Biodegradação do inseticida carbofuran por Syncephalastrum racemosum. Research, Society and Development, 9(7), e824974932. https://doi.org/10.33448/rsd-v9i7.4932

Mantovani, T. R. A., Tanaka, H. S., Umeo, S. H., Zaghi, Jr. L. L., Valle, J. S., Paccola-Meirelles, L. D., Linde, G. A., & Colauto, N. B. (2012). Cryopreservation at −20 and −70 ◦C of Pleurotus ostreatus on grains. Indian Journal of Microbiology, 52 (3), 484-488. https://dx.doi.org/10.1007%2Fs12088-012-0289-4

Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C,. Geer, L. Y., & Bryant, S. H. (2017). CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 45(D1), D200-D203.

https://doi.org/10.1093/nar/gkw1129

Mate, D. M., & Alcalde, M. (2017). Laccase: a multi‐purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology, 10 (6), 1457-1467. https://doi.org/10.1111/1751-7915.12422

Piscitelli, A., Giardina, P., Lettera, V., Pezzella, C., Sannia, G., & Faraco, V. (2011a). Induction and transcriptional regulation of laccases in fungi. Current Genomics, 12(2), 104-112. https://doi.org/10.2174/138920211795564331

Piscitelli, A., Vecchio, C. D., Faraco, V., Giardina, P., Macellaro, G., Miele, A., Pezzella, C., & Sannia, G. (2011b). Fungal laccases: versatile tools for lignocellulose transformation. Comptes Rendus Biologies, 334 (11), 789-794. https://doi.org/10.1016/j.crvi.2011.06.007

Rivera-Hoyos, C. M., Morales-Álvarez, E. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., Rodríguez-Vázquez, R., & Delgado-Boada, J. M. (2013). Fungal laccases. Fungal Biology Reviews, 27 (3), 67-82. https://doi.org/10.1016/j.fbr.2013.07.001

Rodgers, C. J., Blandford, C. F., Giddens, S. R., Skamnioti, P., Armstrong, F. A., & Gurr, S. J. (2010). Designer laccases: a vogue for high-potential fungal enzymes? Trends in Biotechnology, 28 (2), 63-72. https://doi.org/10.1016/j.tibtech.2009.11.001

Shraddha, R. S., Sehgal, S., Kamthania, M., & Kumar, A. (2011). Laccase: microbial sources, production, purification, and potential biotechnological applications.

Enzyme Research, Article ID 217861, 11 p. https://doi.org/10.4061/2011/217861

Sharma, D, Singh, V. P., & Singh, N. K. (2018). A review on phytochemistry and pharmacology of medicinal as well as poisonous mushrooms. Mini-Reviews in Medicinal Chemistry, 18(13), 1095-1109. https://doi.org/10.2174/1389557517666170927144119

Sirim, D., Wagner, F., Wang, L., Schmid, R. D., & Pleiss, J. (2011). The laccase engineering; Database: a classification and analysis system for laccases and related multicopper oxidases. Database, 2011, bar006. https://doi.org/10.1093/database/bar006

Soden, D. M., & Dobson, A. D. W. (2001). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology, 147 (7), 1755-1763. https://doi.org/10.1099/00221287-147-7-1755

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA 6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30 (12), 2725-2729. https://doi.org/10.1093/molbev/mst197

Téllez-Téllez, M., Diaz-Godinez, G., Aguilar, M. B., Sánchez, C., & Fernández, F. J. (2012). Description of a laccase gene from Pleurotus ostreatus expressed under submerged fermentation conditions. Bioresources, 7 (2), 2038-2050.

Valasatava, Y., Rosato, A., Furnham, N., Thornton, J. M., & Andreini, C. (2018). To what extent do structural changes in catalytic metal sites affect enzyme function? Journal of Inorganic Biochemistry, 179, 40-53. https://doi.org/10.1016/j.jinorgbio.2017.11.002

Volpini, ,A. F. N., Thomazine, T., Umeo, S. H., Pereira, G. A., Linde, G. A., Valle, J. S., Colauto, N. B., Barcellos, F. G., & Souza, S. G. H. (2016). Identification and characterization of genes related to cellulolytic activity in basidiomycetes. Genetics and Molecular Research, 15 (3), gmr.15038722. https://doi.org/10.4238/gmr.15038722

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modeling of protein structures and complexes. Nucleic Acids Research, 46 (W1), W296-W303. https://doi.org/10.1093/nar/gky427

Zaghi, Jr. L. L., Lopes, A. D., Cordeiro, F. A., Colla, I. M., Bertéli, M. B. D., Valle, J. S., Linde, G. A., & Colauto, N. B. (2018). Cryopreservation at −75 ◦C of Agaricus subrufescens on wheat grains with sucrose. Brazilian Journal of Microbiology, 49 (2), 370-377. https://doi.org/10.1016/j.bjm.2017.08.003

Yan, L., Xu, R., Bian, Y., Li, H., & Zhou, Y. (2019). Expression profile of Laccase ene family in white-rot basidiomycete Lentinula edodes under different environmental stresses. Genes, 10, 1045. https://dx.doi.org/10.3390%2Fgenes10121045

Descargas

Publicado

11/12/2020

Cómo citar

VOLPINI-KLEIN, A. F. N. .; PEREIRA, G. de A. .; SANTANA, T. T. .; LINDE, G. A. .; VALLE, J. S. do .; COLAUTO, N. B. .; BARCELLOS, F. G.; SOUZA, S. G. H. de . Caracterización in silico de isoformas del gen de lacasa de Basidiomycetes comestibles y medicinales. Research, Society and Development, [S. l.], v. 9, n. 12, p. e1791210388, 2020. DOI: 10.33448/rsd-v9i12.10388. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10388. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas