Caracterização in silico de isoformas dos genes de lacase de Basidiomicetos comestíveis e medicinais

Autores

DOI:

https://doi.org/10.33448/rsd-v9i12.10388

Palavras-chave:

Agaricus; Isogenes; Lentinus; Pleurotus; Fungos da podridão-branca.

Resumo

As lacases fazem parte da família das enzimas ligninolíticas e desempenham papel essencial em vários processos biológicos de fungos filamentosos, incluindo a formação do corpo de frutificação e a degradação da lignina. Este estudo teve como objetivo identificar e caracterizar in silico, genes de lacase em diversas linhagens de Basidiomicetos. O teste de oxidação do guaiacol permitiu a seleção de sete de 11 linhagens com atividade ligninolítica, as quais foram usadas para extração de DNA e amplificação da região de ligação ao cobre. Todas as linhagens selecionadas produziram um único amplicon de aproximadamente 450 bp, que foi posteriormente sequenciado. A análise da sequência sugeriu a presença de uma nova subdivisão dos genes da lacase. A análise de agrupamento confirmou a existência de dois grupos: agrupamento A com seis linhagens e o singleton B com a cepa U8-11. As previsões estruturais da proteína U8-11 foram diferentes em comparação com outras proteínas descritas em nosso estudo devido à ausência do motif ALAVIN e, portanto, a sequência de aminoácidos U8-11 ficou separada em um cluster diferente.

Referências

Baldrian, P. (2006). Fungal laccases - occurrence and properties. FEMS Microbiology Reviews 30 (2), 215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x

Bleve, G., Lezzi, C., Mita, G., Rampino, P., Perrotta, C., Villanova, L., & Grieco, F. (2008). Molecular cloning and heterologous expression of a laccase gene from Pleurotus eryngii in free and immobilized Saccharomyces cerevisiae cells. Applied Microbiology and Biotechnology, 79, 731. https://doi.org/10.1007/s00253-008-1479-1

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I.N., & Bourne, P.E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235

Cannatelli, M. D., & Ragauskas, A. J. (2017). Two decades of laccases: advancing sustainability in the chemical industry. The Chemical Record, 17(1), 122-140. https://doi.org/10.1002/tcr.201600033

Cázares-García, S. V., Vázquez-Garciduenas, M. S., & Vázquez-Marrufo, G. (2013). Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. PLOS One, 8(1), e55295. https://doi.org/10.1371/journal.pone.0055295

Chojnacki, S., Cowley, A., Lee, J., Foix, A., & Lopez, R. (2017). Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Research, 45 (W1), W550-W553. https://doi.org/10.1093/nar/gkx273

Garnier, J., Gibrat, J. F., & Robson, B. (1996). GOR method for predicting protein secondary structure from amino acid sequence. Methods in Enzymology, 266, 540-553. https://doi.org/10.1016/S0076-6879(96)66034-0

Grandes-Blanco, A. I., Tlecuitl-Beristain, S., Díaz, R., Sánchez, C., Téllez-Téllez, M., Márquez-Domínguez, L., Santos-López, G., & Diaz-Godinez, G. (2017). Heterologous expression of laccase (LACP83) of Pleurotus ostreatus. BioResources, 12(2), 3211-3221. https://doi.org/10.15376/biores.12.2.3211-3221

Gupta, V., Balda, S., Gupta, N. K., Capalashe, N., & Sharma, P. (2019). Functional substitution of domain 3 (T1 copper center) of a novel laccase with Cu ions. International Journal of Biological Macromolecules, 123, 1052-1061. https://doi.org/10.1016/j.ijbiomac.2018.11.174

Hall, T. (2011). BioEdit: an important software for molecular biology. GERF Bulletin of Bioscience, 2 (1), 60-61.

Jiao, X., Li, G., Wang, Y., Nie, F., Cheng, X., Abdullah, M., Lin, Y., & Cai, Y. (2018). Systematic analysis of the Pleurotus ostreatus laccase gene (PoLac) family and functional characterization of PoLac2 involved in the degradation of cotton-straw lignin. Molecules, 23 (4), 880. https://doi.org/10.3390/molecules23040880

Kataoka, K., Hirota, S., Maeda, Y., Kogi, H., Shinohara, N., Sekimoto, M., & Sakurai, T. (2010). Enhancement of laccase activity through the construction and breakdown of a hydrogen bond at the type I copper center in Escherichia coli CueO and the deletion mutant Δα5− 7 CueO. Biochemistry, 50 (4), 558-565. https://doi.org/10.1021/bi101107c

Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20 (4), 1160-1166. https://doi.org/10.1093/bib/bbx108.

Kiiskinen, L‐L., Rättö, M., & Kruus, K. (2004). Screening for novel laccase‐producing microbes. Journal of Applied Microbiology, 97 (3), 640-646. https://doi.org/10.1111/j.1365-2672.2004.02348.x

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120. https://doi.org/10.1007/BF01731581

Kües, U., & Rühl, M. (2011). Multiple multi-copper oxidase gene families in basidiomycetes-what for? Current Genomics, 12 (2), 72-94. https://doi.org/10.2174/138920211795564377

Lira, R. K. de S., & Orlanda, J. F. F. (2020). Biodegradação do inseticida carbofuran por Syncephalastrum racemosum. Research, Society and Development, 9(7), e824974932. https://doi.org/10.33448/rsd-v9i7.4932

Mantovani, T. R. A., Tanaka, H. S., Umeo, S. H., Zaghi, Jr. L. L., Valle, J. S., Paccola-Meirelles, L. D., Linde, G. A., & Colauto, N. B. (2012). Cryopreservation at −20 and −70 ◦C of Pleurotus ostreatus on grains. Indian Journal of Microbiology, 52 (3), 484-488. https://dx.doi.org/10.1007%2Fs12088-012-0289-4

Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C,. Geer, L. Y., & Bryant, S. H. (2017). CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 45(D1), D200-D203.

https://doi.org/10.1093/nar/gkw1129

Mate, D. M., & Alcalde, M. (2017). Laccase: a multi‐purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology, 10 (6), 1457-1467. https://doi.org/10.1111/1751-7915.12422

Piscitelli, A., Giardina, P., Lettera, V., Pezzella, C., Sannia, G., & Faraco, V. (2011a). Induction and transcriptional regulation of laccases in fungi. Current Genomics, 12(2), 104-112. https://doi.org/10.2174/138920211795564331

Piscitelli, A., Vecchio, C. D., Faraco, V., Giardina, P., Macellaro, G., Miele, A., Pezzella, C., & Sannia, G. (2011b). Fungal laccases: versatile tools for lignocellulose transformation. Comptes Rendus Biologies, 334 (11), 789-794. https://doi.org/10.1016/j.crvi.2011.06.007

Rivera-Hoyos, C. M., Morales-Álvarez, E. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., Rodríguez-Vázquez, R., & Delgado-Boada, J. M. (2013). Fungal laccases. Fungal Biology Reviews, 27 (3), 67-82. https://doi.org/10.1016/j.fbr.2013.07.001

Rodgers, C. J., Blandford, C. F., Giddens, S. R., Skamnioti, P., Armstrong, F. A., & Gurr, S. J. (2010). Designer laccases: a vogue for high-potential fungal enzymes? Trends in Biotechnology, 28 (2), 63-72. https://doi.org/10.1016/j.tibtech.2009.11.001

Shraddha, R. S., Sehgal, S., Kamthania, M., & Kumar, A. (2011). Laccase: microbial sources, production, purification, and potential biotechnological applications.

Enzyme Research, Article ID 217861, 11 p. https://doi.org/10.4061/2011/217861

Sharma, D, Singh, V. P., & Singh, N. K. (2018). A review on phytochemistry and pharmacology of medicinal as well as poisonous mushrooms. Mini-Reviews in Medicinal Chemistry, 18(13), 1095-1109. https://doi.org/10.2174/1389557517666170927144119

Sirim, D., Wagner, F., Wang, L., Schmid, R. D., & Pleiss, J. (2011). The laccase engineering; Database: a classification and analysis system for laccases and related multicopper oxidases. Database, 2011, bar006. https://doi.org/10.1093/database/bar006

Soden, D. M., & Dobson, A. D. W. (2001). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology, 147 (7), 1755-1763. https://doi.org/10.1099/00221287-147-7-1755

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA 6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30 (12), 2725-2729. https://doi.org/10.1093/molbev/mst197

Téllez-Téllez, M., Diaz-Godinez, G., Aguilar, M. B., Sánchez, C., & Fernández, F. J. (2012). Description of a laccase gene from Pleurotus ostreatus expressed under submerged fermentation conditions. Bioresources, 7 (2), 2038-2050.

Valasatava, Y., Rosato, A., Furnham, N., Thornton, J. M., & Andreini, C. (2018). To what extent do structural changes in catalytic metal sites affect enzyme function? Journal of Inorganic Biochemistry, 179, 40-53. https://doi.org/10.1016/j.jinorgbio.2017.11.002

Volpini, ,A. F. N., Thomazine, T., Umeo, S. H., Pereira, G. A., Linde, G. A., Valle, J. S., Colauto, N. B., Barcellos, F. G., & Souza, S. G. H. (2016). Identification and characterization of genes related to cellulolytic activity in basidiomycetes. Genetics and Molecular Research, 15 (3), gmr.15038722. https://doi.org/10.4238/gmr.15038722

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modeling of protein structures and complexes. Nucleic Acids Research, 46 (W1), W296-W303. https://doi.org/10.1093/nar/gky427

Zaghi, Jr. L. L., Lopes, A. D., Cordeiro, F. A., Colla, I. M., Bertéli, M. B. D., Valle, J. S., Linde, G. A., & Colauto, N. B. (2018). Cryopreservation at −75 ◦C of Agaricus subrufescens on wheat grains with sucrose. Brazilian Journal of Microbiology, 49 (2), 370-377. https://doi.org/10.1016/j.bjm.2017.08.003

Yan, L., Xu, R., Bian, Y., Li, H., & Zhou, Y. (2019). Expression profile of Laccase ene family in white-rot basidiomycete Lentinula edodes under different environmental stresses. Genes, 10, 1045. https://dx.doi.org/10.3390%2Fgenes10121045

Downloads

Publicado

11/12/2020

Como Citar

VOLPINI-KLEIN, A. F. N. .; PEREIRA, G. de A. .; SANTANA, T. T. .; LINDE, G. A. .; VALLE, J. S. do .; COLAUTO, N. B. .; BARCELLOS, F. G.; SOUZA, S. G. H. de . Caracterização in silico de isoformas dos genes de lacase de Basidiomicetos comestíveis e medicinais. Research, Society and Development, [S. l.], v. 9, n. 12, p. e1791210388, 2020. DOI: 10.33448/rsd-v9i12.10388. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10388. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas