Estabilidad aeróbica en ensilados de forrajes tropicales tratados con Lactobacillus buchneri

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.10530

Palabras clave:

Ácido acético; Bacterias del ácido láctico; Ensilaje de maíz; Fermentación.

Resumen

La técnica de ensilado es una forma de conservar el forraje conservando el alimento en un ambiente ácido y libre de oxígeno. Algunas plantas forrajeras, a pesar de tener características deseables para el ensilado, tienen factores predisponentes a una baja estabilidad aeróbica. Así, el objetivo de este trabajo es hablar sobre los efectos del uso de Lactobacillus buchneri como alternativa para controlar el deterioro aeróbico de ensilajes de las principales forrajes tropicales utilizadas en Brasil. Gramíneas como la caña de azúcar, el maíz y el sorgo son ejemplos de forrajes que presentan problemas relacionados con la estabilidad aeróbica, ya que presentan altas concentraciones de carbohidratos solubles residuales y ácido láctico luego de la fase de fermentación activa. Para reducir las pérdidas que puedan ocurrir en la fase aeróbica (después de abrir el silo), es posible utilizar inoculante microbiano (L. buchneri), una cepa bacteriana heterofermentativa que produce ácido láctico y también ácido acético, este último tiene características antifúngicas que actúa inhibiendo el crecimiento de microorganismos indeseables (levaduras y hongos filamentosos) y mejora de la estabilidad aeróbica de los ensilajes. El uso de Lactobacillus buchneri durante el proceso de ensilado reduce las pérdidas tras la apertura del silo, así como mejora la calidad sanitaria de los ensilajes por inhibir el crecimiento de microorganismos deteriorantes.

Citas

Almeida, B., Ohlmeier, S., Almeida, A.J., Madeo, F., Leão, C., Rodrigues, F., & Ludovico, P. (2009). Yeast protein expression profile during acetic acid‐induced apoptosis indicates causal involvement of the TOR pathway. Proteomics, 9(3), 720-732. https://doi.org/10.1002/pmic.200700816

Auerbach, H., & Nadeau, E. (2020). Effects of Additive Type on Fermentation and Aerobic Stability and Its Interaction with Air Exposure on Silage Nutritive Value. Agronomy, 10(9), 1229. https://doi.org/10.3390/agronomy10091229

Auerbach, H., & Theobald, P. (2020). Additive Type Affects Fermentation, Aerobic Stability and Mycotoxin Formation during Air Exposure of Early-Cut Rye (Secale cereale L.) Silage. Agronomy, 10(9), 1432. https://doi.org/10.3390/agronomy10091432

Bernardes, T. F., Daniel, J. L. P., Adesogan, A. T., McAllister, T. A., Drouin, P., Nussio, L.G., Huhtanen, P., Tremblay, G. F., Bélanger G., & Cai, Y. (2018). Silage review: Unique challenges of silages made in hot and cold regions. Journal of Dairy Science, 101(5), 4001-4019. https://doi.org/10.3168/jds.2017-13703

Bernardi, A., Härter, C. J., Silva, A. W., Reis, R. A., & Rabelo, C. H. (2019). A meta‐analysis examining lactic acid bacteria inoculants for maize silage: Effects on fermentation, aerobic stability, nutritive value and livestock production. Grass and Forage Science, 74(4), 596-612. https://doi.org/10.1111/gfs.12452

Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., & Muck, R. E. (2018). Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 101(5), 3952-3979. https://doi.org/10.3168/jds.2017-13837

Carvalho, B. F., Ávila, C. L. S., Krempser, P. M., Batista, L. R., Pereira, M. N., & Schwan, R. F. (2016). Occurrence of mycotoxins and yeasts and moulds identification in corn silages in tropical climate. Journal of Applied Microbiology, 120(5), 1181-1192. https://doi.org/10.1111/jam.13057

Carvalho, B. F., Ávila, C. L. S., Miguel, M. G. C. P., Pinto, J. C., Santos, M. C., & Schwan, R. F. (2015). Aerobic stability of sugar‐cane silage inoculated with tropical strains of lactic acid bacteria. Grass and Forage Science, 70(2), 308-323. https://doi.org/10.1111/gfs.12117

Cavallarin, L., Tabacco, E., Antoniazzi, S., & Borreani, G. (2011). Aflatoxin accumulation in whole crop maize silage as a result of aerobic exposure. Journal of the Science of Food and Agriculture, 91(13), 2419-2425. https://doi.org/10.1002/jsfa.4481

da Silva, N. C., Nascimento, C. F., Campos, V. M., Alves, M. A., Resende, F. D., Daniel, J. L., & Siqueira, G. R. (2019). Influence of storage length and inoculation with Lactobacillus buchneri on the fermentation, aerobic stability, and ruminal degradability of high-moisture corn and rehydrated corn grain silage. Animal Feed Science and Technology, 251, 124-133. https://doi.org/10.1016/j.anifeedsci.2019.03.003

Da Silva, N. C., Nascimento, C. F., Nascimento, F. A., de Resende, F. D., Daniel, J. L. P., & Siqueira, G. R. (2018). Fermentation and aerobic stability of rehydrated corn grain silage treated with different doses of Lactobacillus buchneri or a combination of Lactobacillus plantarum and Pediococcus acidilactici. Journal of Dairy Science, 101(5), 4158-4167. https://doi.org/10.3168/jds.2017-13797

Daniel, J. L. P., Bernardes, T. F., Jobim, C. C., Schmidt, P., & Nussio, L. G. (2019). Production and utilization of silages in tropical areas with focus on Brazil. Grass and Forage Science, 74(2), 188-200. https://doi.org/10.1111/gfs.12417

Driehuis, F., Ould-Elferink, S., & Spoelstra, S. F. (1999). Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. Journal of applied Microbiology, 87(4), 583-594. https://doi.org/10.1046/j.1365-2672.1999.00856.x

Eikmeyer, F. G., Heinl, S., Marx, H., Pühler, A., Grabherr, R., & Schlüter, A. (2015). Identification of oxygen-responsive transcripts in the silage inoculant Lactobacillus buchneri CD034 by RNA sequencing. PLoS One, 10(7), e0134149. https://doi.org/10.1371/journal.pone.0134149

Ferraretto, L. F., Fredin, S. M., & Shaver, R. D. (2015). Influence of ensiling, exogenous protease addition, and bacterial inoculation on fermentation profile, nitrogen fractions, and ruminal in vitro starch digestibility in rehydrated and high-moisture corn. Journal of Dairy Science, 98(10), 7318-7327. https://doi.org/10.3168/jds.2015-9891

Ferraretto, L. F., Taysom, K., Taysom, D. M., Shaver, R. D., & Hoffman, P. C. (2014). Relationships between dry matter content, ensiling, ammonia-nitrogen, and ruminal in vitro starch digestibility in high-moisture corn samples. Journal of Dairy Science, 97(5), 3221-3227. https://doi.org/10.3168/jds.2013-7680

Filya, I., Sucu, E., & Karabulut, A. (2006). The effect of Lactobacillus buchneri on the fermentation, aerobic stability and ruminal degradability of maize silage. Journal of Applied Microbiology, 101(6), 1216-1223. https://doi.org/10.1111/j.1365-2672.2006.03038.x

Gallo, A., Bernardes, T. F., Copani, G., Fortunati, P., Giuberti, G., Bruschi, S., Bryan, K. A., Nielsen, N. G., Witt, K. L., & Masoero, F. (2018). Effect of inoculation with Lactobacillus buchneri LB1819 and Lactococcus lactis O224 on fermentation and mycotoxin production in maize silage compacted at different densities. Animal Feed Science and Technology, 246, 36-45. https://doi.org/10.1016/j.anifeedsci.2018.09.009

Heinl, S., Spath, K., Egger, E., & Grabherr, R. (2011). Sequence analysis and characterization of two cryptic plasmids derived from Lactobacillus buchneri CD034. Plasmid, 66(3), 159-168. https://doi.org/10.1016/j.plasmid.2011.08.002

Heinl, S., Wibberg, D., Eikmeyer, F., Szczepanowski, R., Blom, J., Linke, B., Goesmann, A., Reingar, G., Helmut, S., Pühle, A., & Schlüter, A. (2012). Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage. Journal of Biotechnology, 161(2), 153-166. https://doi.org/10.1016/j.jbiotec.2012.03.007

Junges, D., Morais, G., Spoto, M. H. F., Santos, P. S., Adesogan, A. T., Nussio, L. G., & Daniel, J. L. P. (2017). Influence of various proteolytic sources during fermentation of reconstituted corn grain silages. Journal of dairy science, 100(11), 9048-9051. https://doi.org/10.3168/jds.2017-12943

Kleinschmit, D. H., & Kung Junior, L. (2006). A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. Journal of Dairy Science, 89(10), 4005-4013. https://doi.org/10.3168/jds.S0022-0302(06)72444-4

Kleinschmit, D. H., Schmidt, R. J., & Kung Junior, L. (2005). The effects of various antifungal additives on the fermentation and aerobic stability of corn silage. Journal of Dairy Science, 88(6), 2130-2139. https://doi.org/10.3168/jds.S0022-0302(05)72889-7

Köche, J. C. (2011). Fundamentos de metodologia científica. Editora Vozes. Retrieved from http://www.brunovivas.com/wp-content/uploads/sites/10/2018/07/K%C3%B6che-Jos%C3%A9-Carlos0D0AFundamentos-de-metodologia-cient%C3%ADfica-_-teoria-da0D0Aci%C3%AAncia-e-inicia%C3%A7%C3%A3o-%C3%A0-pesquisa.pdf

Krooneman, J., Faber, F., Alderkamp, A.C., Ould-Elferink, S., Driehuis, F., Cleenwerck, I., & Vancanneyt, M. (2002). Lactobacillus diolivorans sp. nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage. International Journal of Systematic and Evolutionary Microbiology, 52(2), 639-646. https://doi.org/10.1099/00207713-52-2-639

Kung Junior, L., Smith, M. L., da Silva, E. B., Windle, M. C., da Silva, T. C., & Polukis, S. A. (2018b). An evaluation of the effectiveness of a chemical additive based on sodium benzoate, potassium sorbate, and sodium nitrite on the fermentation and aerobic stability of corn silage. Journal of Sairy Science, 101(7), 5949-5960. https://doi.org/10.3168/jds.2017-14006

Ludke, M., & André, M. E. (2011). Pesquisa em educação: abordagens qualitativas. Em Aberto, 5(31). Retrieved from http://rbepold.inep.gov.br/index.php/emabert o/article/view File/1605/1577

Ludovico, P., Sousa, M. J., Silva, M. T., Leão, C., & Côrte-Real, M. (2001). Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology, 147(9), 2409-2415. https://doi.org/10.1099/00221287-147-9-2409

McDonald, P., Henderson, A. R., & Heron, S. J. E. (1991). The biochemistry of silage. Chalcombe publications.

Mogodiniyai Kasmaei, K., Dicksved, J., Spörndly, R., & Udén, P. (2016). Separating the effects of forage source and field microbiota on silage fermentation quality and aerobic stability. Grass and Forage Science, 72(2), 281-289. https://doi.org/10.1111/gfs.12238

Moon, N. J. (1983). Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. Journal of applied Bacteriology, 55(3), 453-460. Retrieved from https://sfamjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2672.1983.tb01685.x

Muck, R. (2013). Recent advances in silage microbiology. Agricultural and Food Science, 22(1), 3-15. https://doi.org/10.23986/afsci.6718

Muck, R. E., Nadeau, E. M. G., McAllister, T. A., Contreras-Govea, F. E., Santos, M. C., & Kung Junior, L. (2018). Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 101(5), 3980-4000. https://doi.org/10.3168/jds.2017-13839

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Editora Universidade Federal de Santa Maria. Retrieved from https://www.ufsm.br/app/uploads/sites/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf

Rabelo, C. H. S., Härter, C. J., Ávila, C. L. D. S., & Reis, R. A. (2019). Meta‐analysis of the effects of Lactobacillus plantarum and Lactobacillus buchneri on fermentation, chemical composition and aerobic stability of sugarcane silage. Grassland Science, 65(1), 3-12. https://doi.org/10.1111/grs.12215

Reisinger, N., Schürer-Waldheim, S., Mayer, E., Debevere, S., Antonissen, G., Sulyok, M., & Nagl, V. (2019). Mycotoxin Occurrence in Maize Silage—A Neglected Risk for Bovine Gut Health? Toxins, 11(10), 577. https://doi.org/10.3390/toxins11100577

Santos, A. O., Ávila, C. L. S., Pinto, J. C., Carvalho, B. F., Dias, D. R., & Schwan, R. F. (2016). Fermentative profile and bacterial diversity of corn silages inoculated with new tropical lactic acid bacteria. Journal of Applied Microbiology, 120(2), 266-279. https://doi.org/10.1111/jam.12980

Saylor, B. A., Casale, F., Sultana, H., & Ferraretto, L. F. (2020). Effect of microbial inoculation and particle size on fermentation profile, aerobic stability, and ruminal in situ starch degradation of high-moisture corn ensiled for a short period. Journal of Dairy Science, 103(1), 379-395. https://doi.org/10.3168/jds.2019-16831

Silva, L. D., Pereira, O. G., Silva, T. C., Leandro, E. S., Paula, R. A., Santos, S. A., Ribeiro, K. G., & Valadares Filho, S. C. (2018). Effects of Lactobacillus buchneri isolated from tropical maize silage on fermentation and aerobic stability of maize and sugarcane silages. Grass and Forage Science, 73(3), 660-670. https://doi.org/10.1111/gfs.12360

Sriramulu, D. D., Liang, M., Hernandez-Romero, D., Raux-Deery, E., Lünsdorf, H., Parsons, J. B., & Prentice, M. B. (2008). Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. Journal of Bacteriology, 190(13), 4559-4567. DOI: 10.1128/JB.01535-07

Tabacco, E., Righi, F., Quarantelli, A., & Borreani, G. (2011). Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula. Journal of Dairy Science, 94(3), 1409-1419. https://doi.org/10.3168/jds.2010-3538

Taylor, C. C., Ranjit, N. J., Mills, J. A., Neylon, J. M., & Kung Junior, L. (2002). The effect of treating whole-plant barley with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for dairy cows. Journal of Dairy Science, 85(7), 1793-1800. https://doi.org/10.3168/jds.S0022-0302(02)74253-7

Valvasori, E., de Sousa Lucci, C., Arcaro, J. R. P., Pires, F. L., & Júnior, I. A. (1995). Avaliação da cana-de-açúcar em substituição à silagem de milho para vacas leiteiras. Brazilian Journal of Veterinary Research and Animal Science, 32(4), 224-228. https://doi.org/10.11606/issn.1678-4456.bjvras.1994.52113

Weinberg, Z. G., & Muck, R. E. (1996). New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiology Reviews, 19(1), 53 68. https://doi.org/10.1111/j.1574-6976.1996.tb00253.x

Wilkinson, J. M., & Davies, D. R. (2013). The aerobic stability of silage: key findings and recent developments. Grass and Forage Science, 68(1), 1-19. https://doi.org/10.1111/j.1365-2494.2012.00891.x

Woolford, M. K. (1990). The detrimental effects of air on silage. Journal of Applied Bacteriology, 68(2), 101-116. Retrieved from https://sfamjournals.onlinelibrary.wile y.com/doi/pdf/10.1111/j.1365-2672.1990.tb02554.x

Zhang, C., Brandt, M. J., Schwab, C., & Gänzle, M. G. (2010). Propionic acid production by cofermentation of Lactobacillus buchneri and Lactobacillus diolivorans in sourdough. Food Microbiology, 27(3), 390-395. https://doi.org/10.1016/j.fm.2009.11.019

Zielińska, K., Fabiszewska, A., Świątek, M., & Szymanowska-Powałowska, D. (2017). Evaluation of the ability to metabolize 1, 2-propanediol by heterofermentative bacteria of the genus Lactobacillus. Electronic Journal of Biotechnology, 26, 60-63. https://doi.org/10.1016/j.ejbt.2017.01.002

Publicado

03/12/2020

Cómo citar

COUTINHO, D. N. .; ALVES, W. S. .; MACÊDO, A. J. da S. .; ANJOS, A. J. dos .; FREITAS, C. A. S. de; SENA, H. P. de. Estabilidad aeróbica en ensilados de forrajes tropicales tratados con Lactobacillus buchneri. Research, Society and Development, [S. l.], v. 9, n. 11, p. e75991110530, 2020. DOI: 10.33448/rsd-v9i11.10530. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10530. Acesso em: 4 dic. 2024.

Número

Sección

Ciencias Agrarias y Biológicas