Estabilidade aeróbia em silagens de gramíneas tropicais tratadas com Lactobacillus buchneri

Autores

DOI:

https://doi.org/10.33448/rsd-v9i11.10530

Palavras-chave:

Ácido acético; Bactérias do ácido lático; Fermentação; Silagem de milho.

Resumo

A técnica de ensilagem é uma forma de conservação de forragem através da preservação do alimento em meio ácido e isento de oxigênio. Algumas plantas forrageiras apesar de possuírem características desejáveis para ensilagem, possuem fatores predisponentes à baixa estabilidade aeróbia. Assim, objetiva-se neste trabalho, dissertar acerca dos efeitos do uso de Lactobacillus buchneri como alternativa para controlar a deterioração aeróbia de silagens das principais gramíneas tropicais utilizadas no Brasil. Gramíneas como a cana-de-açúcar, o milho e o sorgo são exemplos de forrageiras que apresentam problemas relacionados à estabilidade aeróbia, uma vez que possuem elevadas concentrações de carboidratos solúveis residuais e ácido lático após a fase de fermentação ativa. Visando diminuir as perdas que podem ocorrer na fase aeróbia (pós-abertura do silo), pode-se utilizar inoculante microbiano (L. buchneri), cepa bacteriana heterofermentativa que produz ácido lático e também ácido acético, este último possui características antifúngicas que atua inibindo o crescimento de microrganismos indesejáveis (leveduras e fungos filamentosos) e melhorando a estabilidade aeróbia de silagens. O uso de Lactobacillus buchneri durante o processo de ensilagem permite diminuir as perdas após abertura do silo, como também melhorar a qualidade sanitária de silagens devido a inibir o crescimento de microrganismos deterioradores.

Referências

Almeida, B., Ohlmeier, S., Almeida, A.J., Madeo, F., Leão, C., Rodrigues, F., & Ludovico, P. (2009). Yeast protein expression profile during acetic acid‐induced apoptosis indicates causal involvement of the TOR pathway. Proteomics, 9(3), 720-732. https://doi.org/10.1002/pmic.200700816

Auerbach, H., & Nadeau, E. (2020). Effects of Additive Type on Fermentation and Aerobic Stability and Its Interaction with Air Exposure on Silage Nutritive Value. Agronomy, 10(9), 1229. https://doi.org/10.3390/agronomy10091229

Auerbach, H., & Theobald, P. (2020). Additive Type Affects Fermentation, Aerobic Stability and Mycotoxin Formation during Air Exposure of Early-Cut Rye (Secale cereale L.) Silage. Agronomy, 10(9), 1432. https://doi.org/10.3390/agronomy10091432

Bernardes, T. F., Daniel, J. L. P., Adesogan, A. T., McAllister, T. A., Drouin, P., Nussio, L.G., Huhtanen, P., Tremblay, G. F., Bélanger G., & Cai, Y. (2018). Silage review: Unique challenges of silages made in hot and cold regions. Journal of Dairy Science, 101(5), 4001-4019. https://doi.org/10.3168/jds.2017-13703

Bernardi, A., Härter, C. J., Silva, A. W., Reis, R. A., & Rabelo, C. H. (2019). A meta‐analysis examining lactic acid bacteria inoculants for maize silage: Effects on fermentation, aerobic stability, nutritive value and livestock production. Grass and Forage Science, 74(4), 596-612. https://doi.org/10.1111/gfs.12452

Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., & Muck, R. E. (2018). Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 101(5), 3952-3979. https://doi.org/10.3168/jds.2017-13837

Carvalho, B. F., Ávila, C. L. S., Krempser, P. M., Batista, L. R., Pereira, M. N., & Schwan, R. F. (2016). Occurrence of mycotoxins and yeasts and moulds identification in corn silages in tropical climate. Journal of Applied Microbiology, 120(5), 1181-1192. https://doi.org/10.1111/jam.13057

Carvalho, B. F., Ávila, C. L. S., Miguel, M. G. C. P., Pinto, J. C., Santos, M. C., & Schwan, R. F. (2015). Aerobic stability of sugar‐cane silage inoculated with tropical strains of lactic acid bacteria. Grass and Forage Science, 70(2), 308-323. https://doi.org/10.1111/gfs.12117

Cavallarin, L., Tabacco, E., Antoniazzi, S., & Borreani, G. (2011). Aflatoxin accumulation in whole crop maize silage as a result of aerobic exposure. Journal of the Science of Food and Agriculture, 91(13), 2419-2425. https://doi.org/10.1002/jsfa.4481

da Silva, N. C., Nascimento, C. F., Campos, V. M., Alves, M. A., Resende, F. D., Daniel, J. L., & Siqueira, G. R. (2019). Influence of storage length and inoculation with Lactobacillus buchneri on the fermentation, aerobic stability, and ruminal degradability of high-moisture corn and rehydrated corn grain silage. Animal Feed Science and Technology, 251, 124-133. https://doi.org/10.1016/j.anifeedsci.2019.03.003

Da Silva, N. C., Nascimento, C. F., Nascimento, F. A., de Resende, F. D., Daniel, J. L. P., & Siqueira, G. R. (2018). Fermentation and aerobic stability of rehydrated corn grain silage treated with different doses of Lactobacillus buchneri or a combination of Lactobacillus plantarum and Pediococcus acidilactici. Journal of Dairy Science, 101(5), 4158-4167. https://doi.org/10.3168/jds.2017-13797

Daniel, J. L. P., Bernardes, T. F., Jobim, C. C., Schmidt, P., & Nussio, L. G. (2019). Production and utilization of silages in tropical areas with focus on Brazil. Grass and Forage Science, 74(2), 188-200. https://doi.org/10.1111/gfs.12417

Driehuis, F., Ould-Elferink, S., & Spoelstra, S. F. (1999). Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. Journal of applied Microbiology, 87(4), 583-594. https://doi.org/10.1046/j.1365-2672.1999.00856.x

Eikmeyer, F. G., Heinl, S., Marx, H., Pühler, A., Grabherr, R., & Schlüter, A. (2015). Identification of oxygen-responsive transcripts in the silage inoculant Lactobacillus buchneri CD034 by RNA sequencing. PLoS One, 10(7), e0134149. https://doi.org/10.1371/journal.pone.0134149

Ferraretto, L. F., Fredin, S. M., & Shaver, R. D. (2015). Influence of ensiling, exogenous protease addition, and bacterial inoculation on fermentation profile, nitrogen fractions, and ruminal in vitro starch digestibility in rehydrated and high-moisture corn. Journal of Dairy Science, 98(10), 7318-7327. https://doi.org/10.3168/jds.2015-9891

Ferraretto, L. F., Taysom, K., Taysom, D. M., Shaver, R. D., & Hoffman, P. C. (2014). Relationships between dry matter content, ensiling, ammonia-nitrogen, and ruminal in vitro starch digestibility in high-moisture corn samples. Journal of Dairy Science, 97(5), 3221-3227. https://doi.org/10.3168/jds.2013-7680

Filya, I., Sucu, E., & Karabulut, A. (2006). The effect of Lactobacillus buchneri on the fermentation, aerobic stability and ruminal degradability of maize silage. Journal of Applied Microbiology, 101(6), 1216-1223. https://doi.org/10.1111/j.1365-2672.2006.03038.x

Gallo, A., Bernardes, T. F., Copani, G., Fortunati, P., Giuberti, G., Bruschi, S., Bryan, K. A., Nielsen, N. G., Witt, K. L., & Masoero, F. (2018). Effect of inoculation with Lactobacillus buchneri LB1819 and Lactococcus lactis O224 on fermentation and mycotoxin production in maize silage compacted at different densities. Animal Feed Science and Technology, 246, 36-45. https://doi.org/10.1016/j.anifeedsci.2018.09.009

Heinl, S., Spath, K., Egger, E., & Grabherr, R. (2011). Sequence analysis and characterization of two cryptic plasmids derived from Lactobacillus buchneri CD034. Plasmid, 66(3), 159-168. https://doi.org/10.1016/j.plasmid.2011.08.002

Heinl, S., Wibberg, D., Eikmeyer, F., Szczepanowski, R., Blom, J., Linke, B., Goesmann, A., Reingar, G., Helmut, S., Pühle, A., & Schlüter, A. (2012). Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage. Journal of Biotechnology, 161(2), 153-166. https://doi.org/10.1016/j.jbiotec.2012.03.007

Junges, D., Morais, G., Spoto, M. H. F., Santos, P. S., Adesogan, A. T., Nussio, L. G., & Daniel, J. L. P. (2017). Influence of various proteolytic sources during fermentation of reconstituted corn grain silages. Journal of dairy science, 100(11), 9048-9051. https://doi.org/10.3168/jds.2017-12943

Kleinschmit, D. H., & Kung Junior, L. (2006). A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. Journal of Dairy Science, 89(10), 4005-4013. https://doi.org/10.3168/jds.S0022-0302(06)72444-4

Kleinschmit, D. H., Schmidt, R. J., & Kung Junior, L. (2005). The effects of various antifungal additives on the fermentation and aerobic stability of corn silage. Journal of Dairy Science, 88(6), 2130-2139. https://doi.org/10.3168/jds.S0022-0302(05)72889-7

Köche, J. C. (2011). Fundamentos de metodologia científica. Editora Vozes. Retrieved from http://www.brunovivas.com/wp-content/uploads/sites/10/2018/07/K%C3%B6che-Jos%C3%A9-Carlos0D0AFundamentos-de-metodologia-cient%C3%ADfica-_-teoria-da0D0Aci%C3%AAncia-e-inicia%C3%A7%C3%A3o-%C3%A0-pesquisa.pdf

Krooneman, J., Faber, F., Alderkamp, A.C., Ould-Elferink, S., Driehuis, F., Cleenwerck, I., & Vancanneyt, M. (2002). Lactobacillus diolivorans sp. nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage. International Journal of Systematic and Evolutionary Microbiology, 52(2), 639-646. https://doi.org/10.1099/00207713-52-2-639

Kung Junior, L., Smith, M. L., da Silva, E. B., Windle, M. C., da Silva, T. C., & Polukis, S. A. (2018b). An evaluation of the effectiveness of a chemical additive based on sodium benzoate, potassium sorbate, and sodium nitrite on the fermentation and aerobic stability of corn silage. Journal of Sairy Science, 101(7), 5949-5960. https://doi.org/10.3168/jds.2017-14006

Ludke, M., & André, M. E. (2011). Pesquisa em educação: abordagens qualitativas. Em Aberto, 5(31). Retrieved from http://rbepold.inep.gov.br/index.php/emabert o/article/view File/1605/1577

Ludovico, P., Sousa, M. J., Silva, M. T., Leão, C., & Côrte-Real, M. (2001). Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology, 147(9), 2409-2415. https://doi.org/10.1099/00221287-147-9-2409

McDonald, P., Henderson, A. R., & Heron, S. J. E. (1991). The biochemistry of silage. Chalcombe publications.

Mogodiniyai Kasmaei, K., Dicksved, J., Spörndly, R., & Udén, P. (2016). Separating the effects of forage source and field microbiota on silage fermentation quality and aerobic stability. Grass and Forage Science, 72(2), 281-289. https://doi.org/10.1111/gfs.12238

Moon, N. J. (1983). Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. Journal of applied Bacteriology, 55(3), 453-460. Retrieved from https://sfamjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2672.1983.tb01685.x

Muck, R. (2013). Recent advances in silage microbiology. Agricultural and Food Science, 22(1), 3-15. https://doi.org/10.23986/afsci.6718

Muck, R. E., Nadeau, E. M. G., McAllister, T. A., Contreras-Govea, F. E., Santos, M. C., & Kung Junior, L. (2018). Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 101(5), 3980-4000. https://doi.org/10.3168/jds.2017-13839

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Editora Universidade Federal de Santa Maria. Retrieved from https://www.ufsm.br/app/uploads/sites/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf

Rabelo, C. H. S., Härter, C. J., Ávila, C. L. D. S., & Reis, R. A. (2019). Meta‐analysis of the effects of Lactobacillus plantarum and Lactobacillus buchneri on fermentation, chemical composition and aerobic stability of sugarcane silage. Grassland Science, 65(1), 3-12. https://doi.org/10.1111/grs.12215

Reisinger, N., Schürer-Waldheim, S., Mayer, E., Debevere, S., Antonissen, G., Sulyok, M., & Nagl, V. (2019). Mycotoxin Occurrence in Maize Silage—A Neglected Risk for Bovine Gut Health? Toxins, 11(10), 577. https://doi.org/10.3390/toxins11100577

Santos, A. O., Ávila, C. L. S., Pinto, J. C., Carvalho, B. F., Dias, D. R., & Schwan, R. F. (2016). Fermentative profile and bacterial diversity of corn silages inoculated with new tropical lactic acid bacteria. Journal of Applied Microbiology, 120(2), 266-279. https://doi.org/10.1111/jam.12980

Saylor, B. A., Casale, F., Sultana, H., & Ferraretto, L. F. (2020). Effect of microbial inoculation and particle size on fermentation profile, aerobic stability, and ruminal in situ starch degradation of high-moisture corn ensiled for a short period. Journal of Dairy Science, 103(1), 379-395. https://doi.org/10.3168/jds.2019-16831

Silva, L. D., Pereira, O. G., Silva, T. C., Leandro, E. S., Paula, R. A., Santos, S. A., Ribeiro, K. G., & Valadares Filho, S. C. (2018). Effects of Lactobacillus buchneri isolated from tropical maize silage on fermentation and aerobic stability of maize and sugarcane silages. Grass and Forage Science, 73(3), 660-670. https://doi.org/10.1111/gfs.12360

Sriramulu, D. D., Liang, M., Hernandez-Romero, D., Raux-Deery, E., Lünsdorf, H., Parsons, J. B., & Prentice, M. B. (2008). Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. Journal of Bacteriology, 190(13), 4559-4567. DOI: 10.1128/JB.01535-07

Tabacco, E., Righi, F., Quarantelli, A., & Borreani, G. (2011). Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula. Journal of Dairy Science, 94(3), 1409-1419. https://doi.org/10.3168/jds.2010-3538

Taylor, C. C., Ranjit, N. J., Mills, J. A., Neylon, J. M., & Kung Junior, L. (2002). The effect of treating whole-plant barley with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for dairy cows. Journal of Dairy Science, 85(7), 1793-1800. https://doi.org/10.3168/jds.S0022-0302(02)74253-7

Valvasori, E., de Sousa Lucci, C., Arcaro, J. R. P., Pires, F. L., & Júnior, I. A. (1995). Avaliação da cana-de-açúcar em substituição à silagem de milho para vacas leiteiras. Brazilian Journal of Veterinary Research and Animal Science, 32(4), 224-228. https://doi.org/10.11606/issn.1678-4456.bjvras.1994.52113

Weinberg, Z. G., & Muck, R. E. (1996). New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiology Reviews, 19(1), 53 68. https://doi.org/10.1111/j.1574-6976.1996.tb00253.x

Wilkinson, J. M., & Davies, D. R. (2013). The aerobic stability of silage: key findings and recent developments. Grass and Forage Science, 68(1), 1-19. https://doi.org/10.1111/j.1365-2494.2012.00891.x

Woolford, M. K. (1990). The detrimental effects of air on silage. Journal of Applied Bacteriology, 68(2), 101-116. Retrieved from https://sfamjournals.onlinelibrary.wile y.com/doi/pdf/10.1111/j.1365-2672.1990.tb02554.x

Zhang, C., Brandt, M. J., Schwab, C., & Gänzle, M. G. (2010). Propionic acid production by cofermentation of Lactobacillus buchneri and Lactobacillus diolivorans in sourdough. Food Microbiology, 27(3), 390-395. https://doi.org/10.1016/j.fm.2009.11.019

Zielińska, K., Fabiszewska, A., Świątek, M., & Szymanowska-Powałowska, D. (2017). Evaluation of the ability to metabolize 1, 2-propanediol by heterofermentative bacteria of the genus Lactobacillus. Electronic Journal of Biotechnology, 26, 60-63. https://doi.org/10.1016/j.ejbt.2017.01.002

Downloads

Publicado

03/12/2020

Como Citar

COUTINHO, D. N. .; ALVES, W. S. .; MACÊDO, A. J. da S. .; ANJOS, A. J. dos .; FREITAS, C. A. S. de; SENA, H. P. de. Estabilidade aeróbia em silagens de gramíneas tropicais tratadas com Lactobacillus buchneri. Research, Society and Development, [S. l.], v. 9, n. 11, p. e75991110530, 2020. DOI: 10.33448/rsd-v9i11.10530. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10530. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Agrárias e Biológicas