Secado por convección de la pulpa de Butia capitata: efecto de la temperatura del aire sobre los parámetros cinéticos y de calidad

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.10583

Palabras clave:

Butia capitata; Deshidratación de frutas; Secado cinético; Difusión; Compuesto bioactivo.

Resumen

Butiá (Butia capitata) es una fruta típica del Cerrado brasileño, rica en varios compuestos bioactivos. Este trabajo tuvo como objetivo estudiar la influencia de la temperatura del aire en la cinética de secado y los parámetros de calidad de la pulpa de butiá. Las pulpas se secaron a 50 y 70 °C. Los modelos matemáticos se ajustaron a los datos de la proporción de humedad. Se calcularon la difusividad de humedad efectiva (Deff) y la velocidad de secado (DR). Las pulpas frescas y secas se caracterizaron en términos de contenido de humedad (MC), actividad de agua (aw), contenido total de carotenoides (TCC), flavonoides amarillos, contenido fenólico total (TPC), capacidad antioxidante y color. El modelo de Page fue el que mejor se ajustó a los datos del índice de humedad. El secado redujo el contenido de MC, aw y compuestos bioactivos y modificó los parámetros colorimétricos. La temperatura más alta resultó en un TCC más bajo y una diferencia de color total más alta. Sin embargo, redujo el tiempo de secado (de 300 a 180 min), con mayor Deff y DR y resultó en muestras con mayor retención de flavonoides amarillos, TPC y antioxidantes totales y un menor índice de pardeamiento. Por tanto, 70 °C era la temperatura más adecuada para secar la pulpa de butiá.

Citas

Aguiar, M. C. S., Silvério, F. O., de Pinho, G. P., Lopes, P. S. N., Fidêncio, P. H., & Ventura, S. J. (2014). Volatile compounds from fruits of Butia capitata at different stages of maturity and storage. Food Research International, 62, 1095–1099. https://doi.org/10.1016/j.foodres.2014.05.039

Almeida, M. M. B., de Sousa, P. H. M., Arriaga, Â. M. C., do Prado, G. M., Magalhães, C. E. de C., Maia, G. A., & de Lemos, T. L. G. (2011). Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International, 44(7), 2155–2159. https://doi.org/10.1016/j.foodres.2011.03.051

AOAC. (2010). Official methods of analysis (18th ed.). Washington: AOAC Internacional Association of Official Analytical Chemists.

Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Selection of the Solvent and Extraction Conditions for Maximum Recovery of Antioxidant Phenolic Compounds from Coffee Silverskin. Food and Bioprocess Technology, 7, 1322–1332. https://doi.org/10.1007/s11947-013-1115-7

Bober, I., & Oszmianski, J. (2004). The use of chokeberry’s pomace to infusion of fruit tea. Acta Scientiarum Polonorum Technologia Alimentaria, 3(1), 63–72.

Carbonell-Capella, J. M., Buniowska, M., Esteve, M. J., & Frígola, A. (2015). Effect of Stevia rebaudiana addition on bioaccessibility of bioactive compounds and antioxidant activity of beverages based on exotic fruits mixed with oat following simulated human digestion. Food Chemistry, 184, 122–130. https://doi.org/10.1016/j.foodchem.2015.03.095

Chong, C. H., Law, C. L., Figiel, A., Wojdyło, A., & Oziembłowski, M. (2013). Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chemistry, 141(4), 3889–3896. https://doi.org/10.1016/j.foodchem.2013.06.042

Crank, J. (1975). The mathematics of diffusion (2nd ed.). London: Oxford University Press. https://doi.org/10.1115/1.3245200

Curi, P. N., Salgado, D. L., Mendonça, K., Pio, R., Ferreira, J. L. G., & Souza, V. R. de. (2019). Influence of microwave processing on the bioactive compounds, antioxidant activity and sensory acceptance of blackberry jelly. Food Science and Technology, 39(suppl 2), 386–391. https://doi.org/10.1590/fst.18618

De Souza, V. R., Pereira, P. A. P., Queiroz, F., Borges, S. V., & De Deus Souza Carneiro, J. (2012). Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chemistry, 134(1), 381–386. https://doi.org/10.1016/j.foodchem.2012.02.191

Fabisiak, A., Sheng, L., Stawczyk, J., & Witrowa-Rajchert, D. (2005). The influence of method and apples drying temperature on the antioxidant activity of extracts produced from those dried apples. Zywność Nauka Technologia Jakość, 2, 318–327.

Faria, J. P., Siqueira, E. M. A., Vieira, R. F., & Agostini-Costa, T. da S. (2011). Fruits of Butia capitata (Mart.) Becc as good sources of β -carotene and provitamina. Revista Brasileira de Fruticultura, 33(spe1), 612–617. https://doi.org/10.1590/S0100-29452011000500084

Hoffmann, J. F., Barbieri, R. L., Rombaldi, C. V., & Chaves, F. C. (2014). Butia spp. (Arecaceae): An overview. Scientia Horticulturae, 179, 122–131. https://doi.org/10.1016/j.scienta.2014.08.011

Hoffmann, J. F., Zandoná, G. P., dos Santos, P. S., Dallmann, C. M., Madruga, F. B., Rombaldi, C. V., & Chaves, F. C. (2017). Stability of bioactive compounds in butiá (Butia odorata) fruit pulp and nectar. Food Chemistry, 237, 638–644. https://doi.org/10.1016/j.foodchem.2017.05.154

Jangam, S. V., Joshi, V. S., Mujumdar, A. S., & Thorat, B. N. (2008). Studies on Dehydration of Sapota ( Achras zapota ). Drying Technology, 26(3), 369–377. https://doi.org/10.1080/07373930801898190

Junqueira, J. R. de J., Corrêa, J. L. G., de Oliveira, H. M., Ivo Soares Avelar, R., & Salles Pio, L. A. (2017). Convective drying of cape gooseberry fruits: Effect of pretreatments on kinetics and quality parameters. LWT - Food Science and Technology, 82, 404–410. https://doi.org/10.1016/j.lwt.2017.04.072

Karam, M. C., Petit, J., Zimmer, D., Baudelaire Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32–49. https://doi.org/10.1016/j.jfoodeng.2016.05.001

Kumar, P. S., Nambi, E., Shiva, K. N., Vaganan, M. M., Ravi, I., Jeyabaskaran, K. J., & Uma, S. (2019). Thin layer drying kinetics of Banana var. Monthan (ABB): Influence of convective drying on nutritional quality, microstructure, thermal properties, color, and sensory characteristics. Journal of Food Process Engineering, 42(4), 1–12. https://doi.org/10.1111/jfpe.13020

López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E., & Di Scala, K. (2010). Effect of Air Temperature on Drying Kinetics, Vitamin C, Antioxidant Activity, Total Phenolic Content, Non-enzymatic Browning and Firmness of Blueberries Variety O´Neil. Food and Bioprocess Technology, 3(5), 772–777. https://doi.org/10.1007/s11947-009-0306-8

Macedo, L. L., Silva Araújo, C., Vimercati, W. C., Saraiva, S. H., & Teixeira, L. J. Q. (2019). Evaluation of different bleaching methods applied to yacon. Journal of Food Process Engineering, 42(7). https://doi.org/10.1111/jfpe.13276

Macedo, L. L., Vimercati, W. C., Araújo, C. da S., Saraiva, S. H., & Teixeira, L. J. Q. (2020). Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. Journal of Food Process Engineering, e13451, 1–10. https://doi.org/10.1111/jfpe.13451

Mendonça, K. S., Corrêa, J. L. G., Junqueira, J. R. de J., Cirillo, M. A., Figueira, F. V., & Carvalho, E. E. N. (2017). Influences of convective and vacuum drying on the quality attributes of osmo-dried pequi (Caryocar brasiliense Camb.) slices. Food Chemistry, 224, 212–218. https://doi.org/10.1016/j.foodchem.2016.12.051

Mounir, S., Ghandour, A., Téllez-Pérez, C., Aly, A. A., Mujumdar, A. S., & Allaf, K. (2020). Phytochemicals, chlorophyll pigments, antioxidant activity, relative expansion ratio, and microstructure of dried okra pods: swell-drying by instant controlled pressure drop versus conventional shade drying. Drying Technology, 1–15. https://doi.org/10.1080/07373937.2020.1756843

Muliterno, M. M., Rodrigues, D., de Lima, F. S., Ida, E. I., & Kurozawa, L. E. (2017). Conversion/degradation of isoflavones and color alterations during the drying of okara. LWT - Food Science and Technology, 75, 512–519. https://doi.org/10.1016/j.lwt.2016.09.031

Multari, S., Marsol-Vall, A., Keskitalo, M., Yang, B., & Suomela, J.-P. (2018). Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa) from Finland. Journal of Food Composition and Analysis, 72, 75–82. https://doi.org/10.1016/j.jfca.2018.06.008

Omolola, A. O., Jideani, A. I. O., & Kapila, P. F. (2017). Quality properties of fruits as affected by drying operation. Critical Reviews in Food Science and Nutrition, 57(1), 95–108. https://doi.org/10.1080/10408398.2013.859563

Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, 6, 36–60. https://doi.org/10.1007/s11947-012-0867-9

Pereira, M. C., Steffens, R. S., Jablonski, A., Hertz, P. F., Rios, A. de O., Vizzotto, M., & Flôres, S. H. (2013). Characterization, bioactive compounds and antioxidant potential of three Brazilian fruits. Journal of Food Composition and Analysis, 29(1), 19–24. https://doi.org/10.1016/j.jfca.2012.07.013

Rufino, M. do S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037

Romdhane, N. G., Bonazzi, C., Kechaou, N., & Mihoubi, N. B. (2015). Effect of Air-Drying Temperature on Kinetics of Quality Attributes of Lemon ( Citrus limon cv. lunari) Peels. Drying Technology, 33(13), 1581–1589. https://doi.org/10.1080/07373937.2015.1012266

Şahin, U., & Öztürk, H. K. (2016). Effects of pulsed vacuum osmotic dehydration (PVOD) on drying kinetics of figs (Ficus carica L). Innovative Food Science and Emerging Technologies, 36, 104–111. https://doi.org/10.1016/j.ifset.2016.06.003

Samoticha, J., Wojdyło, A., & Lech, K. (2016). The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT - Food Science and Technology, 66, 484–489. https://doi.org/10.1016/j.lwt.2015.10.073

Santos, F. S. dos, Figueirêdo, R. M. F. de, Queiroz, A. J. de M., & Santos, D. da C. (2017). Drying kinetics and physical and chemical characterization of white-fleshed ‘pitaya’ peels. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(12), 872–877. https://doi.org/10.1590/1807-1929/agriambi.v21n12p872-877

Schneider, L. R., dos Santos, D. C., Campos, A. D., & Lund, R. G. (2017). The Phytochemistry and Pharmacology of Butia sp.: A Systematic Review and an Overview of the Technological Monitoring Process. Phytotherapy Research, 31(10), 1495–1503. https://doi.org/10.1002/ptr.5883

Shaari, N. A., Sulaiman, R., Rahman, R. A., & Bakar, J. (2018). Production of pineapple fruit (Ananas comosus) powder using foam mat drying: Effect of whipping time and egg albumen concentration. Journal of Food Processing and Preservation, 42(2), 1–10. https://doi.org/10.1111/jfpp.13467

Silva, L. M. R. da, Figueiredo, E. A. T. de, Ricardo, N. M. P. S., Vieira, I. G. P., Figueiredo, R. W. de, Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398–404. https://doi.org/10.1016/j.foodchem.2013.08.001

Song, X. D., Mujumdar, A. S., Law, C. L., Fang, X. M., Peng, W. J., Deng, L. Z., … Xiao, H. W. (2019). Effect of drying air temperature on drying kinetics, color, carotenoid content, antioxidant capacity and oxidation of fat for lotus pollen. Drying Technology, 0(0), 1–14. https://doi.org/10.1080/07373937.2019.1616752

Thuwapanichayanan, R., Prachayawarakorn, S., Kunwisawa, J., & Soponronnarit, S. (2011). Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. LWT - Food Science and Technology, 44(6), 1502–1510. https://doi.org/10.1016/j.lwt.2011.01.003

Vimercati, W. C., Araújo, C. da S., Macedo, L. L., Fonseca, H. C., Guimarães, J. S., Abreu, L. R. de, & Pinto, S. M. (2020). Physicochemical, rheological, microbiological and sensory properties of newly developed coffee flavored kefir. Lwt, 123(October 2019), 109069. https://doi.org/10.1016/j.lwt.2020.109069

Vimercati, W. C., Macedo, L. L., Araújo, C. da S., Maradini Filho, A. M., Saraiva, S. H., & Teixeira, L. J. Q. (2020). Effect of storage time and packaging on cooking quality and physicochemical properties of pasta with added nontraditional ingredients. Journal of Food Processing and Preservation, e14637, 1–12. https://doi.org/10.1111/jfpp.14637

Descargas

Publicado

02/12/2020

Cómo citar

MACEDO, L. L.; CORRÊA, J. L. G. .; FONSECA, H. C. .; ARAÚJO, C. da S. .; VIMERCATI, W. C. .; GANDIA, R. M. . Secado por convección de la pulpa de Butia capitata: efecto de la temperatura del aire sobre los parámetros cinéticos y de calidad. Research, Society and Development, [S. l.], v. 9, n. 11, p. e73791110583, 2020. DOI: 10.33448/rsd-v9i11.10583. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10583. Acesso em: 23 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas