Prospección química de aceite de moringa y calidad bromatológica de la empanada, de diferentes tipos de procesamiento de granos
DOI:
https://doi.org/10.33448/rsd-v9i11.10599Palabras clave:
Secado; Extracción de aceite; Ácidos grasos.Resumen
Moringa oleifera Lam. es una planta resistente a la sequía y capaz de sobrevivir en suelos pobres, obteniendo hasta tres cosechas por año. El objetivo de este trabajo fue estudiar la prospección química del aceite y la calidad bromatológica de la torta de moringa a diferentes temperaturas de secado (40, 55 y 70ºC) así como de los métodos de extracción química y mecánica del aceite. Los aceites extraídos se evaluaron cualitativamente para determinar los niveles de acidez, peróxido y yodo, así como la composición química de los ácidos grasos mediante cromatografía de gases, de muestras secadas a diferentes temperaturas del aire de secado. Se evaluó el contenido de agua, extracto etéreo, proteína cruda, cenizas y fibras en detergente neutro de los pasteles de extracciones mecánicas. Las temperaturas del aire de secado de 40, 55 y 70 ºC afectaron significativamente la calidad físico-química del aceite y la torta de moringa, siendo el mejor resultado las muestras de los granos secos a 40 ° C. La composición de los principales ácidos grasos no se alteró según el método estadístico aplicado, siendo estos ácidos grasos oleico (73,60 a 77,07%), erúcico (5,65 a 6,67%) y palmitoleico (4,90 a 5,72%). La extracción química del aceite, aunque más eficiente que la mecánica, presentó mayores niveles de acidez y peróxido. El contenido de fibras en detergente neutro y proteína cruda de la tarta disminuyó significativamente para los granos secos con temperatura del aire de secado superior a 40 ° C.
Citas
Agarwal, V., Dixit, D., & Bhatt, M. J. (2019). Use of Moringa oleifera Seeds as a Primary Coagulant in Textile Wastewater Treatment. In Waste Management and Resource Efficiency, pp. 1231-1236. Springer, Singapore.
Agustini, M. A. B., Wendt, L., Paulus, C., Malavasi, M. M., & Gusatto, F. C. (2015). Maturidade fisiológica de sementes de Moringa oleifera Lam. Revista Inova Ciência & Tecnologia, 8, 267-278.
Alves, G. E., Borém, F. M., Isquierdo, E. P., Siqueira, V. C., Cirillo, M. Â., & Pinto, A. C. F. (2017). Physiological and sensorial quality of Arabica coffee subjected to different temperatures and drying airflows. Acta Scientiarum 39, 225-233.
American Oil Chemists Society (1998). Official methods and recommended practices of the AOCS. A.O.C.S.: Champaign.
Andrade, E. T. D., Lemos, I. A., Dias, C. D. A., Rios, P. A., & Borém, F.M. (2019). Mathematical modelling and immediate and latent quality of natural immature coffee under different drying conditions. Engenharia Agrícola, 39, 630-638.
Andrade, L. C. T., França, F. R. M., Ramos, A. L. D., & Silva, G. F. (2016). Avaliação da estabilidade do biodiesel produzido a partir da Moringa oleifera Lam. Scientia Plena, 12, 1-7.
Araújo, E. F., Galvão, J. C .C., Miranda, G. V., & Araújo, R. F. (2002). Qualidade fisiológica de sementes de milho-doce submetidas à debulha, com diferentes graus de umidade. Revista Brasileira de Milho e Sorgo, 1, 101110.
Atolani, O., Olorundare, O. E., Anoka, A. N., Osin, A. O., & Biliaminu, S. A. (2018). Antioxidant, proteinase inhibitory and membrane stabilization potentials of Moringa oleifera seed oil. FABAD Journal of Pharmaceutical Sciences, 43, 1-13.
Boukandoul, S., Casal, S., Cruz, R., Pinho, C., & Zaidi, F. (2017). Algerian Moringa oleifera whole seeds and kernels oils: Characterization, oxidative stability, and antioxidant capacity. European Journal of Lipid Science and Technology, 119, 1600410.
Brasil (2009). Regra para Análises de Sementes. MAPA/ACS: Brasília, Brasil.
Candeia, R. A., Silva, M. C. D., Carvalho Filho, J. R., Brasilino, M. G. A., Bicudo, T. C., Santos, I. M. G., & Souza, A. G. (2009). Influence of soybean biodiesel content on basic properties of biodiesel–diesel blends. Fuel, 88, 738-743.
Carvalho. G. G. P. , Pires, A. J .V., Garcia, R., Veloso, C. M., Silva, R. R., Mendes, F. B. L., Pinheiro, A. A., & Souza, D. R. (2009). In situ degradability of dry matter, crude protein and fibrous fraction of concentrate and agroindustrial by-products. Ciência Animal Brasileira, 10, 689-697.
Cheng, K., Dong, W., Long, Y., Zhao, J., Hu, R., Zhang, Y., & Zhu, K. (2019). Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans. Food science & nutrition, 7, 1084-1095.
Dziki, D. & Gawlik-Dziki, U. (2019). Processing of germinated grains. In Sprouted Grains pp. 69-90. AACC International Press.
El-Naggar, S. I. (2018). Impact of incorporating Moringa oleifera seed cake as protein source in growing lambs ration. Agricultural Engineering International: CIGR Journal, 19, 289-292.
Elghandour, M. M. Y., Vallejo, L. H., Salem, A. Z. M., Mellado, M., Camacho, L. M., Cipriano, M., ... & Rojas, S. (2017). Moringa oleifera leaf meal as an environmental friendly protein source for ruminants: biomethane and carbon dioxide production, and fermentation characteristics. Journal of Cleaner Production, 165, 1229-1238.
Ferreira, D. F. (2014). Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38, 109-112.
Fitriana, W. D., Ersam, T., Shimizu, K., & Fatmawati, S. (2016). Antioxidant activity of Moringa oleifera extracts. Indonesian Journal of Chemistry, 16, 297-301.
Gandji, K., Salako, V. K., Fandohan, A. B., Assogbadjo, A. E., & Kakaï, R. L. G. (2018). Factors determining the use and cultivation of Moringa oleifera Lam. in the Republic of Benin. Economic botany, 72, 332-345.
Garza, N. G. G., Koyoc, J. A. C., Castillo, J. A. T., Zambrano, E. A. G., Ancona, D. B., Guerrero, L. C., & García, S. R. S. (2017). Biofunctional properties of bioactive peptide fractions from protein isolates of moringa seed (Moringa oleifera). Journal of food science and technology, 54, 4268-4276.
Gopalakrishnan, L., Doriya, K., & Kumar, D. S. (2016). Moringa oleifera: A review on nutritive importance and its medicinal application. Food science and human wellness, 5, 49-56.
Instituto Adolfo Lutz (2008). Métodos físico-quimicos para análise de alimentos. Instituto Adolfo Lutz: São Paulo.
Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86, 1059-1070.
Leone, A., Spada, A., Battezzati, A., Schiraldi, A., Aristil, J., & Bertoli, S. (2016). Moringa oleifera seeds and oil: Characteristics and uses for human health. International Journal of Molecular Sciences, 17, 2141.
Lusas, E.W., Watkins, L. R., & Koseoglu, S. S. (1991). Isopropyl alcohol to be tested as solvent. Inform, 2, 972-976.
Mahmoud, M. A. (2019). Effect of treated Moringa oleifera seed powder on improving nutritional quality of cake. International Journal of Food and Nutritional Sciences, 8, 1-10.
Mat Yusoff, M., Niranjan, K., Mason, O. A., & Gordon, M. H. (2020). Oxidative properties of Moringa oleifera kernel oil from different extraction methods during storage. Journal of the Science of Food and Agriculture, 100, 1588-1597.
Melo, M. A.M. F. (2014). Avaliação das propriedades de óleos vegetais visando a produção de biodiesel. Universidade Federal da Paraíba, João Pessoa.
Nadeem, M., Abdulla, M., Khalique, A., Hussain, I., Mahmud, A., & Inayat, S. (2018). The Effect of Moringa oleifera Leaf Extract as Antioxidant on Stabilization of Butter Oil with Modified Fatty Acid Profile. Journal of Agriculturual Science and Technology, 15, 919-928.
Nascimento, A. C. S., Oliveira, A. F. G., Lavôr, M. B., Pereira, E. C., & Amorim, M. C. C. (2020). Low turbidity water treated with seeds of Moringa oleifera Lam. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 24, e41.
Nguyen, H. N., Pag-Asa, D. G., Maridable, J. B., Malaluan, R. M., Hinode, H., Salim, S., & Huynh, H. K. P. (2011). Extraction of oil from Moringa oleifera kernels using supercritical carbon dioxide with ethanol for pretreatment: optimization of the extraction process. Chemical Engineering and Processing: Process Intensification, 50, 1207–1213.
Nour, A. A. M. & Ibrahim, M. A. E. M. (2016). Effect of Supplementation with Moringa Leaves Powder (MLP) and fermentation on chemical composition, total minerals contents and sensory characteristics of sorghum flour. International Journal of Science and Research, 5, 672-677.
Ojewumi, M. E. (2018). Alternative solvent ratios for Moringa oleifera seed oil extract. International Journal of Mechanical Engineering and Technology, 9, 295-307.
Oladipo, B. & Betiku, E. (2019). Process optimization of solvent extraction of seed oil from Moringa oleifera: an appraisal of quantitative and qualitative process variables on oil quality using D-optimal design. Biocatalysis and Agricultural Biotechnology, 20, 101187.
Oyeyinka, A. T. & Oyeyinka, S. A. (2018). Moringa oleifera as a food fortificant: Recent trends and prospects. Journal of the Saudi Society of Agricultural Sciences, 17, 127-136.
Pitkin, F., Black, J., Stedford, K., Valentine, O., Knott, J., & Laverdure, E. (2019). A Comparative Study of the Antimicrobial Effects of the Desmodium incanum and the Moringa oleifera Extracts on Select Microbes. International Journal of Public Health and Health Systems, 4, 27-35.
Rodrigues Filho, M. G. & Souza, A. G. (2009). Antioxidative Properties of hidrogenated cardanol of cotton biodiesel by PDSC and UV/Vis. Journal of Thermal Analysis and Calorimetry, 97, 605-609.
Rodríguez, R., González, N., Domínguez, M., & Sarduy, L. (2016). Nutritional value of foliage meal from four species of tropical trees for feeding ruminants. Cuban Journal of Agricultural Science, 48, 371-378.
Silva, D. J. (1990). Análise de alimentos (métodos químicos e biológicos). Viçosa: UFV. 166 p.
Valenga, M. G. P., Boschen, N. L., Rodrigues, P. R. P., & Maia, G. A. R. (2019). Agro-industrial waste and Moringa oleifera leaves as antioxidants for biodiesel. Industrial Crops and Products, 128, 331-337.
Zeeshan, M., Vasudeva, M., & Sarma, A. K. (2016). Biodiesel production from Moringa oleifera oil and its characteristics as fuel in a diesel engine. In Proceedings of the First International Conference on Recent Advances in Bioenergy Research, pp. 149-157. New Delhi: Springer.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Bárbara Lemes Outeiro Araújo; Ednilton Tavares de Andrade; Jaqueline Damiany Portela; Rafael Peron Castro; Pedro Castro Neto
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.