Aumento de la actividad anticoagulante de la warfarina y su suposible interacción con el extracto acuoso de la baya de goji (Lycium barbarum L.) en ratas Wistar

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i12.11070

Palabras clave:

Asistencia sanitaria; Interacciones alimento-medicamento; Tiempo de protrombina; Tromboembolia venosa.

Resumen

El consumo de la baya de goji (Lycium barbarum L.) ha despertado un interés a nivel mundial debido a sus excelentes propiedades nutricionales y funcionales, relacionadas con la disminución del riesgo de desarrollar enfermedades crónicas derivadas del estrés oxidativo, clasificándolo como un “super alimento”. Por lo tanto, el objetivo de este estudio ha sido evaluar los efectos del extracto acuoso de la baya de goji sobre parámetros hematológicos y bioquímicos en ratas Wistar tratadas con warfarina. La concentración de fenoles totales se determinó mediante el reactivo de Folin-Ciocalteau, mientras que la capacidad antioxidante fuera determinado mediante la prueba DPPH. Los animales fueron divididos en cuatro grupos experimentales: agua destilada (vehículo - control negativo); alimentado diariamente con el extracto (0,18 g.Kg-1); tratados diariamente con agua y warfarina (0,5 mg.Kg-1 - control positivo) y los tratados simultáneamente con el extracto y warfarina, a lo largo de siete días. Nuestros resultados mostraron una alta cantidad de polifenoles (6,19 ± 0,3 mg EAG.g-1) en el extracto acuoso al 10 % (m.v-1) y sugieren una actividad antioxidante considerable (IC50 1068 µg.mL-1). No hemos observado diferencias significativas entre los perfiles bioquímicos y hematológicos, o siquiera signos de toxicidad del extracto cuando se administra solamente el. Los datos provenientes del uso concomitante con warfarina son impresionantes y muestran un aumento significativo del tiempo de protrombina, con potencial de hemorragia. Conjuntamente, estas observaciones sugieren la propensión a una interacción clínicamente importante entre warfarina y Lycium barbarum L., lo que compromete la seguridad de este fármaco y nos aclara para la búsqueda de futuras investigaciones relacionadas con una comprensión más exhaustiva de los mecanismos moleculares implicados.

Citas

Abuduaibifu, A., & Tamer, C. E. (2019). Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. Journal of Food Processing and Preservation, 43(9), e14077. https://doi.org/10.1111/jfpp.14077.

Ahad, H., Jin, H., Liu, Y., Wang, J., Sun, G., Liang, X., & Aisa, H. A. (2020). Chemical profiling of spermidines in goji berry by strong cation exchange solid-phase extraction (SCXSPE) combined with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS/MS). Journal of Chromatography B, 1137, 121923. https://doi.org/ 10.1016/j.jchromb.2019.121923.

Alara, O. R., Mudalip, S. K. A., Abdurahman, N. H., Mahmoud, M. S., & Obanijesu, E. O. (2019). Data on parametric influence of microwave-assisted extraction on the recovery yield, total phenolic content and antioxidant activity of Phaleria macrocarpa fruit peel extract. Chemical Data Collections, 24(1), 100277-100284. https://doi.org/10.1016/j.cdc.2019.100277.

Amagase, H., & Farnsworth, N. R. (2011). A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Research International, 44(7), 1702-1717. https://doi.org/10.1016/

j.foodres.2011.03.027.

Annadurai, P., Annadurai, V., Yongkun, M., Pugazhendhi, A., & Dhandayuthapani, K. (2021). Phytochemical composition, antioxidant and antimicrobial activities of Plecospermum spinosum Trecul. Process Biochemistry, 100(1), 107-116. https://doi.org/10.1016/j.procbio.2020.09.031.

Baker, W., Cios, D. A., Sander, S. D., & Coleman, C. I. (2009). Meta-analysis to assess the quality of warfarin control in atrial fibrillation patients in the United States. Journal of Managed Care Pharmacy, 15(3), 244-252. https://doi.org/ 10.18553/jmcp.2009.15.3.244.

Benchennouf, A., Grigorakis, S., Loupassaki, S., & Kokkalou, E. (2016). Phytochemical analysis and antioxidant activity of Lycium barbarum (Goji) cultivated in Greece. Pharmaceutical Biology, 55(1), 596-602. https://doi.org/10.1080/13880209.2016.1265987.

Blasi, F., Montesano, D., Simonetti, M. S., & Cossignani, L. (2017). A simple and rapid extraction method to evaluate the fatty acid composition and nutritional value of goji berry lipid. Food Analytical Methods, 10(4), 970-979. https://doi.org/10. 1007/s12161-016-0652-x.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.

Cañizares, L. C. C., Timm, N. S., Ramos, A. H., Neutzling, H. P., Ferreira, C. D., & Oliveira, M. (2020). Effects of moisture content and expansion method on the technological and sensory properties of white popcorn. International Journal of Gastronomy and Food Science, 22, 100282. https://doi.org/10.1016/j.ijgfs.2020. 100282.

Conidi, C., Drioli, E., & Cassano, A. (2020). Coupling ultrafiltration-based processes to concentrate phenolic compounds from aqueous goji berry extracts. Molecules, 25(16), 3761. https://doi.org/10.3390/molecules25163761.

Denger, A. P. F. L., Kawano, L. O., Paula, R. A. O., Santos, L. B., Rodrigues, M. R., Paula, F. B. A., Duarte, S. M. S. Determinação da atividade antioxidante e de fenóis totais do pequi (Caryocar brasiliense Camb.) Research, Society and Development, 9(11), e 2859119781. https://doi.org/10.33448/rsd-v9i11.9781.

Donno, D., Beccaro, G. L., Mellano, M. G., Cerutti, A. K., & Bounous, G. (2015). Goji berry fruit (Lycium spp.): antioxidant compound fingerprint and bioactivity evaluation. Journal of Functional Foods, 18(B), 1070-1085. https://doi.org/10.1016/ j.jff.2014.05.020.

European Pharmacopoeia Commission (2019). Barbary wolfberry fruit: Lycii fructus. In: European Pharmacopoeia Commission. European pharmacopoeia. (10. Ed., pp. 1332-1333). Strasbourg: Council of Europe.

Food Ingredients & Packaging (2019, Jun. 9). Generally Recognized as Safe (GRAS). Recuperado em: 04 de dezembro 2020, de https://www.fda.gov/ food/food-ingredientspackaging/generally-recognized-safe-gras.

Forino, M., Tartaglione, L., Dell’Aversano, C., & Ciminiello, P. (2016). NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries). Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries. Food Chemistry, 194, 1254-1259. https://doi.org/10.1016/j.foodchem.2015.08.129.

Ge, X., Jing, L., Zhao, K., Su, C., Zhang, B., Zhang, Q., Han, L., Yu, X., & Li, W. (2021, Jan 15). The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chemistry, 335, 127655.

https://doi.org/10.1016/j.foodchem.2020.127655.

Gobbo-Neto, L., & Lopes, N. P. (2007). Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova, 30(2), 374-381. http://dx.doi.org/10.1590/S0100-40422007000200026. Recuperado em 15 out. 2020 de https://www.scielo.br/pdf/qn/v30n2/25.pdf.

Guo, Y., Amorati, R., & Valgimigli, L. (2020, Oct. 26). Synergic antioxidant activity of γterpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chemistry. https://doi.org/10.1016/j.foodchem.2020.128468.

Hatano, T., Kagawa, H., Yasuhara, T., & Okuda T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavanging effects. Chemical Pharmaceutical Bulletin, 36(6), 2090-2097. https://doi.org/10.1248/cpb.36.2090.

Inbaraj, B. S., Lu, H., Hung, C. F., Wu, W. B., Lin, C. L., & Chen, B. H. (2008). Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC DAD-APCI MS. Journal of Pharmaceutical and Biomedical Analysis, 47(4-5), 812-818. https://doi.org/10.1016/j.jpba.2008.04.001.

Kaminsky, L. S., & Zhang, Z.-Y. (1997). Human P450 metabolism of warfarin. Pharmacology & Therapeutics, 73(1), 67-74. https://doi.org/10.1016/s0163-7258(96)00140-4.

Lam, A. Y., Elmer, G. W., & Mohutsky, M. A. (2001). Possible interaction between Warfarin and Lycium Barbarum L. Annals of Pharmacotherapy, 35(10), 1199-1201. https://doi.org/10.1345/aph.1Z442.

Le, K., Chiu, F., & Ng, K. (2007). Identification and quantification of antioxidants in Fructus lycii. Food Chemistry, 105(1), 353-363. https://doi.org/10.1016/j. foodchem.2006.11.063.

Leite, P. M., Castilho, R. O., Ribeiro, A. L. P., & Martins, M. A. P. (2016). Consumption of medicinal plants by patients with heart diseases at a pharmacist-managed anticoagulation clinic in Brazil. International Journal of Clinical Pharmacy, 38(2), 223-227. https://doi.org/10.1007/s11096-016-0270-0.

Leung, H., Hung, A., Hui, A. C. F., & Chan, T. Y. K. (2008). Warfarin overdose due to the possible effects of Lycium barbarum L. Food and Chemical Toxicology, 46(5), 1860-1862. https://doi.org/10.1016/j.fct.2008. 01.008.

Li, H., Zhang, C., Fan, R., Sun, H., Xie, H., Luo, J., Wang, Y., Lv, H., Tang, T. (2016). The effects of Chuanxiong on the pharmacokinetics of warfarin in rats after biliary drainage. Journal of Ethnopharmacology, 193, 117-124. https://doi.org/10.1016/j.jep.2016.08.005.

Llorent-Martínez, E. J., Fernández-de Córdova, M. L., Ortega-Barrales, P., & Ruiz-Medina, A. (2013). Characterization and comparison of the chemical composition of exotic superfoods. Microchemical Journal, 110, 444-451. https://doi.org/10.

/j.microc.2013.05.016.

Lopatriello, A., Previtera, R., Pace, S., Werner, M., Rubino, L., Werz, O., TaglialatelaScafatia, O., & Forino, M. (2017). NMR-based identification of the major bioactive molecules from an Italian cultivar of Lycium barbarum. Phytochemistry, 144, 52-57. https://doi.org/10.1016/j.phytochem.2017.08.016.

Lou, X., Xu, H., Hanna, M., & Yuan, L. (2020). Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation. LWT, 130, 109643. https://doi.org/10.1016/j.lwt.2020. 109643.

Mocan, A., Moldovan, C., Zengin, G., Bender, O., Locatelli, M., Simigiotis, M., Atalay, A., Vodnar, D. C., Rohn, S., & Crisan, G. (2018). UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian Goji (Lycium barbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food and Chemical Toxicology, 115, 414-424. https://doi.org/10.1016/j.fct.2018.01.054.

Montesano, D., Cossignani, L., Giua, L., Urbani, E., Simonetti, M. S., & Blasi, F. (2016). A simple HPLC-ELSD method for sugar analysis in Goji Berry. Journal of Chemistry, 2016(3), 1-5. https://doi.org/10.1155/2016/6271808.

Navajas-Porras, B., Pérez-Burillo, S., Morales-Pérez, J., Rufián-Henares, J. A., & Pastoriza, S. (2020). Relationship of quality parameters, antioxidant capacity and total phenolic content of EVOO with ripening state and olive variety. Food Chemistry, 325(1), 126926-126939. https://doi.org/10.1016/j.foodchem.2020.126926.

Nieva-Rchevarría, B., Goicoechea, E., & Guillén, M. D. (2017). Effect of liquid smoking on lipid hydrolysis and oxidation reactions during in vitro gastrointestinal digestion of European sea bass. Food Research International, 97(1), 51-61. https://doi.org/10.1016/j.foodres.2017.03.032.

Olszowy, M. (2019). What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiology and Biochemistry, 144(1), 135-143. https://doi.org/10.1016/j.plaphy.2019.09.039.

Pedro, A. C., Sánchez-Mata, M-C., Pérez-Rodríguez, M. L., Cámara, M., López-Colón, J. L., Bach, F., Bellettini, M., Haminiuk, C. W. I. (2019). Qualitative and nutritional comparison of goji berry fruits produced in organic and conventional systems. Scientia Horticulturae, 257(1), 108660-108668. http://dx.doi.org/10.1016/j.scienta.2019.108660.

Pereira, A. S., Shitsuka, M. S., Pereira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_MetodologiaPesquisa-Cientifica.pdf?sequence=1.

Piatkov, I., Rochester, C., Jones, T., & Boyages, S. (2010). Warfarin toxicity and individual variability: clinical case. Toxins, 2(11), 2584-2592. https://doi.org/ 10.3390/toxins2112584.

Pirmohamed, M., Kamali, F., Daly, A. K., & Wadelius, M. (2015). Oral anticoagulation: a critique of recent advances and controversies. Trends in Pharmacological Sciences, 36(3), 153-163. https://doi.org/10.1016/j.tips. 2015.01.003.

Pogačnik, L., Ota, A., & Ulrih, N. P. (2020). An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases. Cells, 9(3), 576. https://doi.org/10.3390/cells9030576.

Protti, M., Gualandi, I., Mandrioli, R., Zappoli, S., Tonelli, D., & Mercolini, L. (2017). Analytical profiling of selected antioxidants and total antioxidant capacity of goji (Lycium spp.) berries. Journal of Pharmaceutical and Biomedical Analysis, 143, 252-260. https://doi.org/10.1016/j.jpba.2017.05.048.

Qian, J.-Y., Liu, D., & Huang, A. (2004). The efficiency of flavonoids in polar extracts of Lycium chinense Mill fruits as free radical scavenger. Food Chemistry, 87(2), 283-288. https://doi.org/10.1016/j.foodchem.2003.11.008.

Quick, A. J., Stanley-Bronwn, M., & Bancroft, F. W. (1935). A study of the coagulation defect in hemophilia and in jaundice. American Journal of the Medical Sciences, 190(4), 501-511. https://doi.org/10.1055/s-0038-1650068.

Rasool, A., Zulfajric, M., Gulzard, A., Hanafiahef, M. M., Unnisab, S. A., & Mahbooba, M. (2020). In vitro effects of cobalt nanoparticles on aspartate aminotransferase and alanine aminotransferase activities of wistar rats. Biotechnology Reports, 26, e00453. https://doi.org/10.1016/j.btre.2020.e00453.

Ren, Z., Na, L., Xu, Y., Rozati, M., Wang, J., Xu, J., Sun, C., Vidal, K., Wu, D., & Meidani, S. N. (2012). Dietary supplementation with lacto-wolfberry enhances the immune response and reduces pathogenesis to influenza infection in mice. The Journal of Nutrition. 142(8), 1596-1602. https://doi.org/10.3945/jn.112.159467.

Rivera, C. A., Ferro, C. L., Bursua, A. J., & Gerber, B. S. (2012). Probable interaction between Lycium barbarum (Goji) and Warfarin. Pharmacotherapy, 32(3), 50-53. https://doi.org/10.1002/j.1875-9114.2012.01018.x.

Rocchetti, G., Chiodelli, G., Giuberti, G., Ghisoni, S., Baccolo, G., Biasi, F, Montesano, D., Trevisan, M., & Lucini, L. (2018). UHPLC-ESI-QTOF-MS profile of polyphenols in Goji berries (Lycium barbarum L.) and its dynamics during in vitro gastrointestinal digestion and fermentation. Journal of Functional Foods, 40, 564-572. https://doi.org/10.1016/j.jff.2017.11.042.

Rudasill, S. E., Liu, J., & Kamath, A. F. (2019). Revisiting the International Normalized Ratio (INR) threshold for complications in primary total knee arthroplasty: an analysis of 21,239 cases. The Journal of Bone and Joint Surgery: American Volume, 101(6), 514-522. https://doi.org/10.2106/JBJS.18.00771.

Sherkatolabbasieh, H., Firouzi, M., & Shafizadeh, S. (2020). Evaluation of platelet count, erythrocyte sedimentation rate and C-reactive protein levels in paediatric patients with inflammatory and infectious disease. New Microbes and New Infections, 37, 100725. https://doi.org/10.1016/j.nmni.2020.100725.

Silva, V. M., Rezende, D. C., Garcia, E. S., Cavalheiro, C., & Strunz, C. C. (2020). Effect of anticoagulant adjustment on prothrombin time test using two different PT reagents in patients with elevated hematocrit. Practical Laboratory Medicine, 22, e00177. https://doi.org/10.1016/j.plabm.2020.e00177.

Skenderidis, P., Lampakis, D., Giavasis, I., Leontopoulos, S., Petrotos, K., Hadjichristodoulou, C., & Tsakalof, A. (2019). Chemical properties, fatty-acid composition, and antioxidant activity of Goji Berry (Lycium barbarum L. and Lycium chinense Mill.) fruits. Antioxidants, 8(3), 60. https://doi.org/10.3390/ antiox8030060.

Tang, W.-M., Chan, E., Kwok, C.-Y., Lee, Y.-K., Wu, J.-H., Wan, C.-W., Chan, R. Y.-K., Yu, P. H.-F., & Chan, S.-W. (2012). A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit. Inflammopharmacology, 20, 307-314.

https://doi.org/10.1007/s10787-011-0107-3.

Tang, H.-L., Chen, C., Wang, S.-K., & Sun, G.-J. (2015). Biochemical analysis and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. International Journal of Biological Macromolecules, 77, 235-242.

https://doi.org/10.1016/j.ijbiomac.2015.03.026.

Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Analytical Biochemistry, 524, 13-30. https://doi.org/10.1016/j.ab.2016.10.021.

Ulbricht, C., Chao, W., Costa, D., Rusie-Seamon, E., Weissner, W., & Woods, J. (2008). Clinical evidence of herb-drug interactions: a systematic review by the natural standard research collaboration. Current Drug Metabolism, 9(10), 1063-1120. https://doi.org/10.2174/138920008786927785.

Wang, C. C., Chang, S. C., Inbaraj, B.S., & Chen, B. H. (2010). Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chemistry, 120(1), 184-192. https://doi.org/10.1016/j.foodchem.2009.10.005.

Wang, H., Zhang, S., Shen, Q., & Zhu, M.-J. (2019). A metabolomic explanation on beneficial effects of dietary Goji on intestine inflammation. Journal of Functional Foods, 53, 109-114. https://doi.org/10.1016/j.jff.2018. 12.014.

Winterbourn, C. C., Gutteridge, J. M., & Halliwell, B. (1985). Doxorubicin dependent lipid peroxidation at low partial pressures of O2. Journal of Free Radicals in Biology and Mededicine, 1(1), 43-49. https://doi.org/10.1016/0748-5514(85)90028-5.

Woisk, R. G., & Salatino, A. (1998). Analisys of própolis: some parameters and procedures for chemical quality control. Journal of Apicultural Research, 37(2), 99-105. https://doi.org/10.1080/00218839.1998.11100961.

Wojdyło, A., Nowicka, P., & Bąbelewski, P. (2018). Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. Journal of Functional Foods, 48, 632-642. https://doi.org/ 10.1016/j.jff.2018.07.061.

Wu, D. T., Guo, H., Lin, S., Lam, S. C., Zhao, L., Lin, D. R., Qin, Wen. (2018). Review of the structural characterization, quality evaluation, and industrial application of Lycium barbarum polysaccharides. Trends in Food Science & Technology, 79, 171-183. https://doi.org/10.1016/j.tifs.2018.07.016.

Yang, X., Bai, H., Li, W. C. J., Zhou, Q., Wang, Y., Han, J., Zhu, X., Dong, M., & Hu, D. (2013). Lycium barbarum polysaccharides reduce intestinal ischemia/reperfusion injuries in rats. Chemico-Biological Interactions, 204(3), 166-172.

https://doi.org/10.1016/j.cbi.2013.05.010.

Yang, R., Zhao, C., Chen, X., Chan, S. & Wu, J. (2015). Chemical properties and bioactivities of Goji (Lycium barbarum) polysaccharides extracted by different methods. Journal of Functional Foods, 17, 903-909. tps://doi.org/10.1016/j.jff. 2015.06.045.

Yao, R., Heinrich, M., & Weckerle, C. S. (2018). The genus Lycium as food and medicine: a botanical, ethnobotanical and historical review. Journal of Ethnopharmacology, 212, 50-66. https://doi.org/10.1016/j.jep.2017.10.010.

Zhang, J., Tian, L. & Xie, B. (2015). Bleeding due to a probable interaction between warfarin and Gouqizi (Lycium Barbarum L.). Toxicology Reports, 2, 1209-1212. https://doi.org/10.1016/j.toxrep.2015.08.011.

Zhang, G.-M., Zhang, G.-M., Hu, S., Peng, Y.-F., & Gu, B. (2020). Is testing of aspartate aminotransferase necessary along with every alanine aminotransferase for health check in elderly individuals? Clinica Chimica Acta: International Journal of Clinical Chemistry, 507, 224-227. https://doi.org/10.1016/j.cca.2020.05.003.

Zhang, X., Li, X., Su, M., Du, J., Zhou, H., Li, X., & Ye, Z. (2020). A comparative UPLC-QTOF/MS-based metabolomics approach for distinguishing peach (Prunus persica (L.) Batsch) fruit cultivars with varying antioxidant activity. Food Research International, 137(1), 109531-109543. https://doi.org/10.1016/j.foodres.2020.109531.

Žlabur, J. S., Žutić, I., Radman, S., Pleša, M., Brnčić, M., Barba, F. J., Rochetti, G., Lucini, L., Lorenzo, J. M., Domíngez, R., Brnčić, S. R., Galić, A., & Voća, S. (2020). Effect of different green extraction methods and solvents on bioactive components of chamomile (Matricaria chamomilla L.) flowers. Molecules, 25(4), 810. https://doi.org/10.3390/molecules25040810.

Publicado

24/12/2020

Cómo citar

OLIVEIRA, G. A. de .; CAMILO, M. A.; MARQUES, L. G. .; OLIVEIRA, C. M. de .; FIGUEIREDO, S. A. .; SANTOS, L. B.; PAULA, R. A. de O.; PAULA, F. B. de A. .; RODRIGUES, M. R.; DUARTE, S. M. da S. Aumento de la actividad anticoagulante de la warfarina y su suposible interacción con el extracto acuoso de la baya de goji (Lycium barbarum L.) en ratas Wistar. Research, Society and Development, [S. l.], v. 9, n. 12, p. e29591211070, 2020. DOI: 10.33448/rsd-v9i12.11070. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11070. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias de la salud