Efectos del fungicida combinado en abejas sin aguijón Scaptotrigona bipunctata

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i1.12029

Palabras clave:

Histología; Microscopía electrónica de barrido; Concentración crítica de electrolitos; Bencimidazol; Triazol; Estrobirulina.

Resumen

Locker es un fungicida utilizado en diferentes cultivos para el control biológico, que afecta tanto a insectos plagas como a polinizadores, como las abejas. Este estudio tuvo como objetivo evaluar la toxicidad y establecer la concentración letal (CL50) del fungicida Locker en abejas sin aguijón Scaptotrigona bipunctata, investigando cambios en la estructura de la cromatina de las células cerebrales y en la morfología del intestino de la abeja. El producto utilizado es un fungicida combinado que contiene tres principios activos: benzimidazol, triazol y estrobilurina. Las abejas forrajeras adultas fueron expuestas por vía oral a concentraciones de 1,7 mg a.i./L; 2,55 mg a.i./L; 3,4 mg a.i./L y 4,25 mg a.i./L de fungicida, y sometidos a análisis histoquímico y morfológico 24, 48 y 72 horas después de la ingestión del producto. El análisis de células cerebrales de S. bipunctata mostró cambios en la condensación de cromatina en todos los tratamientos. También hubo varios cambios morfológicos en el intestino medio en todas las concentraciones y tiempos de exposición. Así, el fungicida Locker afectó significativamente la supervivencia de las abejas, induciendo cambios en su morfología interna, lo que puede conducir a cambios en sus actividades, interfiriendo directamente en su comportamiento de forrajeo y supervivencia.

Biografía del autor/a

Tamiris de Oliveira Diniz, Universidade Estadual de Maringá

Biology degree at Universidade Paranaense (Unipar). Master in Genetics and Breeding at Universidade Estadual de Maringá (UEM). Specialist in Biotechnology at Universidade Estadual de Maringá (UEM). PhD student in Genetics and Breeding at Universidade Estadual de Maringá (UEM).

Naiara Climas Pereira, Universidade Estadual de Maringá

Biology degree at the Universidade Estadual de Maringá (UEM). Master in Genetics and Breeding at Universidade Estadual de Maringá (UEM). PhD student in Genetics and Breeding at Universidade Estadual de Maringá (UEM).

Breno Gabriel da Silva, Universidade de São Paulo

Mathematics degree at Universidade Estadual de Maringá (UEM). Master in Biostatistics at Universidade Estadual de Maringá (UEM). PhD student in Statistics and Agricultural Experimentation at Escola Superior de Agricultura "Luiz de Queiroz" - Universidade de São Paulo (ESALQ / USP).

William Cristian da Silva Pizzaia, Universidade Estadual de Maringá

Biology degree at Faculdade Global de Umuarama (FGU). Master in Genetics and Breeding at Universidade Estadual de Maringá (UEM). PhD in Genetics and Breeding at Universidade Estadual de Maringá (UEM).

Fernanda Giovana Martins de Oliveira, Universidade Estadual de Maringá

Biology degree at Faculdade de Jandaia do Sul (FAFIJAN). Master's student in Genetics and Breeding at at Universidade Estadual de Maringá (UEM).

Adriana Aparecida Sinópolis-Gigliolli, Universidade Estadual de Maringá

PhD in Biological Sciences at Universidade Estadual de Maringá (UEM). Adjunct professor at the Department of Biotechnology, Genetics and Cell Biology at Universidade Estadual de Maringá (UEM).

Vagner de Alencar Arnaut de Toledo, Universidade Estadual de Maringá

PhD in Zootechnics at Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP). Full professor at the Zootechnics Department at Universidade Estadual de Maringá (UEM).

Maria Claudia Colla Ruvolo-Takasusuki, Universidade Estadual de Maringá

PhD in Genetics and Evolution at Universidade Federal de São Carlos (UFSCAR). Associate professor at the Department of Biotechnology, Genetics and Cell Biology at Universidade Estadual de Maringá (UEM).

Citas

Adapar – Agência de Defesa Agropecuária do Paraná. Disponível em: http://www.adapar.pr.gov.br/. Acesso em: 13, março, 2020.

Arena, M., & Sgolastra, F. (2014). A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology, 23 (3), 324-334. doi: 10.1007 / s10646-014-1190-1

Barbosa, D. B., Crupinski, E. F., Silveira, R. N., & Limberger, D. C. H. (2017). As abelhas e seu serviço ecossistêmico de polinização. Revista Eletrônica Científica da UERGS, 3 (4), 694-703. doi: 10.21674/2448-0479.34.694-703

Bartlett, D. W., Clough, J.M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58 (7), 649-662. doi: 10.1002 / ps.520

Batista, A. C., Domingues, C. E. C., Costa, M. J., & SILVA-ZACARIN, E. C. M. (2020). Is a strobilurin fungicide capable of inducing histopathological effects on the midgut and Malpighian tubules of honey bees? Journal of Apicultural Research, (59) 5, 1-10. doi: 10.1080/00218839.2020.1724678

Camargo, J. M. F., & Pedro, S. R. M. (2013). Meliponini Lepeletier, 1836. In: Moure, J. S. & Urban, D. eds. Melo GAR (Orgs) Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region. Curitiba, Brazil: UFPR; Online Version. Disponível em: http://www.moure.cria.org.br/catalogue. Acesso em: 13 jan 2020.

Campbell, J. B., Nath, R., Gadau, J., Fox, T., Degrandi-Hoffman, G., & Harrison, J. F. (2016). The fungicide Pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honey bees. Journal of Insect Physiology, 86 (3), 11-16. doi: 10.1016 / j.jinsphys.2015.12.003

Carneiro, L. S., Martínez, L. C., Gonçalves, W. G., Santana, L. M., & Serrão, J. E. (2020). The fungicide iprodione affects midgut cells of non-target honey bee Apis mellifera workers. Ecotoxicology and Environmental Safety, 189 (11), 1-7. doi: 10.1016/j.ecoenv.2019.109991

Catae, A. F., Roat, T. C., Oliveira, R. A., Nocelli, R. C. F., & Malaspina, O. (2014). Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae). Microscopy Research & Technique, 77 (4), 274-281. doi: 10.1002/jemt.22339

Coutinho, C. F. B., Galli, A., Mazo, L. H., & Machado, S. A. S. (2006). Carbendazim e o meio ambiente: degradação e toxidez. Revista de Ecotoxicologia e Meio Ambiente, 16 (12), 63-70. doi: 10.5380/pes.v16i0.7480

Diao, Q., Yuan, K., Liang, P., & Gao, X. (2005). Tissue distribution and properties of glutathione S-transferases in Apis cerana cerana Fabricius and Apis mellifera ligustica Spinola. Journal of Apicultural Research, (45) 3, 145-152. doi: 10.1080/00218839.2006.11101333

Diniz, T. O., Pereira, N. C., Silva, B. G., Pizzaia, W. C. S., Oliveira, F. G. M., Sinópolis-Gigliolli, A. A., & Ruvolo-Takasusuki, M. C. C. (2020). Toxicity and effects of combined agrochemical in Scaptotrigona bipunctata bees. Scientific Electronic Archives, 13 (12), 41-53. doi: 10.36560/131220201258

Diniz, T. O., Pereira, N. C., Pizzaia, W. C. S., Sinópolis-Gigliolli, A. A., Silva, B.G., Borges, Y. M., Guedes, T. A., & Ruvolo-Takasusuki, M. C. C. (2020). Toxicity and genetic analysis of bees Scaptotrigona bipunctata after contamination with insecticide acephate. Scientific Electronic Archives, 13 (8), 8-17. doi: 10.36560 / 13820201157

Domingues, C. E. C., Inoue, L. V. B., Silva-Zacarin, E. C. M., & Malaspina, O. (2020). Foragers of Africanized honeybee are more sensitive to fungicide pyraclostrobin than newly emerged bees. Environmental Pollution, 266 (2), 1-12. doi: 10.1016/j.envpol.2020.115267

Freitas, B.M., & Pinheiro, J.N. (2010). Efeitos sub-letais dos pesticidas agrícolas e seus impactos no manejo de polinizadores dos agroecossistemas brasileiros. Oecologia Australis, 14 (1), 282-298. doi: 10.4257 / oeco.2010.1401.17

IPCS. (2006). International Programme on Chemical Safety. Carbendazim. Disponível em: <http://www.inchem.org/documents/icsc/icsc/eics1277.htm>. Acesso em: 18 jan 2020.

Imperatriz-Fonseca, V. L. (2004). Serviços aos ecossistemas, com ênfase nos polinizadores e polinização. Disponível em: <http://files.cesaiifce.webnode.com.br/200000020bd221be1bb/Servi%C3%A7os%20aos%20ecossistemas,%20com%20%C3%AAnfase%20nos%20polinizadores%20e%20poliniza%C3%A7%C3%A3o.pdf>. Acesso em: 18 jan 2020.

Landim, C. C. (2009). Abelhas: morfologia e função de sistemas. São Paulo, Brazil: UNESP.

Malaspina, O., & Silva-Zacarin, E. C. M. (2006). Cell markers for ecotoxicological studies in target organs of bees. Brazilian Journal of Morphological Sciences, 23 (3), 303-309. Retrieved from http://www.jms.periodikos.com.br/article/587cb4627f8c9d0d058b463d

Nicodemo, D., Mingatto, F. E., Carvalho, A., Bizerra, P. F. V., Tavares, M. A., Balieira, K. V. B., & Bellini, W. C. (2018). Pyraclostrobin impairs energetic mitochondrial metabolism and productive performance of silkworm (Lepidoptera: bombycidae) caterpillars. Journal of Economic Entomology, 111 (3), 1369-1375. doi: 10.1093 / jee / toy060

Oliveira, R. A., Roat, T. C., Carvalho, S. M., & Malaspina, O. (2014). Side-effects of thiamethoxam on the brain and midgut of the africanized honeybee Apis mellifera (Hymenopptera: Apidae). Environmental Toxicology, 29 (10), 1122-1133. doi: 10.1002 / tox.21842

R Core Team. (2020). R: a language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing.

Richardson, R. J. (1999). Pesquisa social: métodos e técnicas. São Paulo: Atlas.

Roat, T. C., Carvalho, S. M., Nocelli, R. C. F., Silva-Zacarin, E. C. M.; Oalma, M. S., & Malaspina, O. (2013). Effects of sublethal dose of fipronil on neuron metabolic activity of Africanized honeybees. Archives of Environmental Contamination and Toxicology, 64 (3), 456-466. doi: 10.1007/s00244-012-9849-1

Rodenhiser, D., & Mann, M. (2006). Epigenetics and human disease: translating basic biology into clinical applications. Canadian Medical Association Journal, 174 (3), 341-348. doi: 10.1503 / cmaj.050774

Rossi, C. A., Roat, T. C., Tavares, D. A., Cintra-Socolowski, P., & Malaspina, O. (2013). Effects of sublethal doses of imidacloprid in Malpighian tubules of africanized Apis mellifera (Hymenoptera, Apidae). Microscopy Research and Technique, 76 (5), 552-558. doi: 10.1002 / jemt.22199

Sanchez-Bayo, F. & Goka, K. (2014). Pesticide residues and bees – A risk assessment. PLoS ONE, 9 (4), e94482. doi: 10.1371/journal.pone.0094482

Santos, S. A., Fermino, F., Moreira, B. M. T., Araújo, K. F., Falco, J. R. P., & Ruvolo-Takasusuki, M. C. C. (2014). Critical electrolyte concentration of silk gland chromatin of the sugarcane borer Diatraea saccharalis, induced using agrochemicals. Genetics and Molecular Research, 13 (3), 7958-7964. doi: 10.4238/2014.September.29.9

Sidrim, J. J. C. & Rocha, M. F. G. (2012). Micologia médica à luz dos autores contemporâneos. Rio de Janeiro: Guanabara Koogan.

Sueth-Santiago, V., Franklim, T. N., Lopes, N. D., & Lima, M. E. F. (2015). CYP51: Uma Boa Ideia? Revista Virtual de Química, 7 (2), 539-575. doi: 10.5935/1984-6835.20150024

Tavares, D. A., Roat, T. C., Carvalho, S. M., Silva-Zacarin, E. C. M., & Malaspina, O. (2015). In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae). Chemosphere, 135 (5), 370-378. doi: 10.1016/j.chemosphere.2015.04.090

Thany, S. H. Bourdin, C. M., Graton, J., Laurent, A. D., Mathé-Allainmat, M., Lebreton, J., & Questel, J. Y. L. (2015). Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera). Insects, 6 (4), 805-814. doi: 10.3390/insects6040805

Tison, L., Hahn, M. L., Holtz, S., Robner, A., Greggers, U., Bischoff, G., & Menzel, R. (2016). Honey Bees’ Behavior Is Impaired by Chronic Exposure to the Neonicotinoid Thiacloprid in the Field. Environmental Science & Technology, 50 (13), 7218-7227. doi: 10.1021/acs.est.6b02658

Vannette, R. L., Mohamed, A., & Johnson, B. R. (2015). Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing. Scientific Reports, 5 (1), 1-9. doi: 10.1038/srep16224

Vidal, B. C. (1987). Métodos em biologia celular. In: Vidal, B.C. & Mello, M.L.S. eds. Biologia Celular. Rio de Janeiro, Brasil: Atheneu.

Vidal, B. C., & Mello, M. L. S. (1989). Critical electrolyte concentration of DNA and nucleoprotein complexes in vitro. Acta Histochemica et Cytochemica, 22 (4), 471-478. doi: 10.1267/ahc.22.471

Zauza, E. A. V., Couto, M. M. F., Maffia, L. A., & Alfenas, A. C. (2008). Eficiência de fungicidas sistêmicos no controle da ferrugem do Eucalyptus. Revista Árvore, 32 (5), 829-835. doi: 10.1590/S0100-67622008000500007

Descargas

Publicado

30/01/2021

Cómo citar

DINIZ, T. de O.; PEREIRA, N. C.; SILVA, B. G. da; PIZZAIA, W. C. da S.; OLIVEIRA, F. G. M. de .; SINÓPOLIS-GIGLIOLLI, A. A. .; TOLEDO, V. de A. A. de .; RUVOLO-TAKASUSUKI, M. C. C. . Efectos del fungicida combinado en abejas sin aguijón Scaptotrigona bipunctata. Research, Society and Development, [S. l.], v. 10, n. 1, p. e53710112029, 2021. DOI: 10.33448/rsd-v10i1.12029. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12029. Acesso em: 8 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas