Influencia de los agentes precipitantes sobre el desempeño de los catalizadores de hierro en la deshidrogenación del etilbenceno

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i2.12425

Palabras clave:

Estireno; Etilbenceno; Catalizadores de hierro; Hematita; Óxido de hierro.

Resumen

La deshidrogenación catalítica del etilbenceno, con vapor de agua, es la tecnología dominante para la producción industrial de estireno, que es una materia prima muy utilizada en la fabricación de plásticos. El catalizador comercial consiste en óxido de hierro dopado con potasio y cromo y tiene una superficie específica baja, además de ser susceptible de desactivación. Con el fin de obtener catalizadores más eficientes que los disponibles comercialmente, este trabajo estudió el efecto del agente precipitante sobre el desempeño de los catalizadores de hierro, basados ​​en hematita. Las muestras se prepararon por el método sol-gel, utilizando hidróxido de amonio, hidróxido de potasio y carbonato de potasio como agentes precipitantes y se evaluaron en la deshidrogenación de etilbenceno a 480, 530, 580 y 630 oC. Se observó que el agente precipitante más adecuado era el carbonato de potasio, que producía el catalizador más activo, con mayor superficie específica y resistencia a la reducción. A la temperatura de los procesos industriales (530 oC), este catalizador era cuatro veces más activo que una muestra comercial.

Citas

Addiego,W. P., Liu, W., & Borger, T. (2001). Iron oxide-based honeycomb catalysts for the dehydrogenation of ethylbenzene to styrene. Catalysis Today, 69, 25-31. https://doi.org/10.1016/S0920-5861(01)00351-0

Araújo, G. C., & Rangel, M. C. (2000). An environmental friendly dopant for the high-temperature shift catalysts. Catalysis Today, 62, 201–207. https://doi.org/10.1016/S0920-5861(00)00421-1

Borgna, A., Sepúlveda, J., Magni, S. I., & Apesteguia, C., R. (2004). Active sites in the alkylation of toluene with methanol: a study by selective acid–base poisoning. Applied Catalysis A- General, 276(1-2), 207-215. https://doi.org/10.1016/j.apcata.2004.08.007

Brito, M. L., Ferreira Júnior, J. M., Santos, L. C. L. dos, & Simonelli, G. (2020). Advances in ethanol autothermal reform for hydrogen gas production: a review. Research, Society and Development, 9(5), e126953070. https://doi.org/10.33448/rsd-v9i5.3070

Cui, X., Tang. C., Liu, X. M., Wang. C., Ma. W., & Zhang. Q. (2018). Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts. Chemistry - A European Journal, 24(69), 18494–18501. https://doi.org/10.1002/chem.201800535

Dolgykh, L. Y., Stolyarchuk, I. L., Staraya, L. A., Vasylenko, I. V., Pyatnitsky, Y. I., & Strizhak, P. E. (2015). Steam Reforming of Ethanol over Manganese and Iron Oxides for Hydrogen Production. Adsorption Science & Technology, 33, 715–721. https://doi.org/10.1260/0263-6174.33.6-8.715

Flego, C., Cosentino, G., & Tagliabue, M. (2004). Three-element mixed oxides: a new approach to basic catalysts. Applied Catalysis A- General, 270(1-2), 113-120. https://doi.org/10.1016/j.apcata.2004.04.035

Fonseca, J., Bion, N., Licea, Y. E., Morais, C. M., Rangel, M. C., Duprez, D., & Epron, F. (2019). Unexpected redox behaviour of large surface alumina containing highly dispersed ceria nanoclusters. Nanoscale, 11(3), 1273-1285. https://doi.org/10.1039/C8NR07898J

Gomez Sanz, S., McMillan, L., McGregor, J., Zeitler, J. A., Al-Yassir, N., Al-Khattaf, S., & Gladden, L. F. (2015). A new perspective on catalytic dehydrogenation of ethylbenzene: The influence of side-reactions on catalytic performance. Catalysis Science and Technology, 5 (7), 3782–3797. https://doi.org/10.1039/C5CY00457H

Herzog, B. D., & Raso, H. F. (1984). In situ catalyst reactivation: used ethylbenzene dehydrogenation catalyst with agglomerated potassium promoter. Industrial & Engineering Chemistry Product Research and Development, 23, 187-196. https://doi.org/10.1021/i300014a002

Lee, E.H. (1974). Iron Oxide Catalysts for Dehydrogenation of Ethylbenzene in the Presence of Steam. Catalysis Reviews, 8(2), 285-305. https://doi.org/10.1080/01614947408071864

Lima, S. B., Borges, S. M. S., Rangel, M. C., & Marchetti, S. G. (2013). Effect of iron content on the catalytic properties of activated carbon-supported magnetite derived from biomass. Journal of the Brazilian Chemical Society, 24, 344-354. http://dx.doi.org/10.5935/0103-5053.20130044

Lødeng, R., Lunder, O., Lein, J. E., Dahl, P. I., & Svenum, I. H. (2018). Synthesis of light olefins and alkanes on supported iron oxide catalysts. Catalysis Today, 299, 47–59. https://doi.org/10.1016/j.cattod.2017.06.039

McDevitt, N. T., & Baun, W. L. (1964). Infrared absorption study of metal oxides in the low frequency region (700-240 cm−1). Spectrochim. Acta, 20, 799-808. https://doi.org/10.1016/0371-1951(64)80079-5

Medeiros, A. S. R., & Rangel, M. C. (2010). Influence of the Sodium-based Precipitants on the Properties of Aluminum-doped Hematite Catalysts for Ethylbenzene Dehydrogenation. Studies in Surface Science and Catalysis, 175, 815-818. https://doi.org/10.1016/S0167-2991(10)75167-3

Miller, F. A., & Wilkins, C. H. (1952). Infrared Spectra and Characteristic Frequencies of Inorganic Ions. Anal. Chem, 24, 1253. https://doi.org/10.1021/ac60068a007

Nyquist, R. A., & Kagel, R. O. (1971). Infrared Spectra of Inorganic compounds. Orlando: Academic Press.

Oliveira, A. C., Fierro, J. L. G., Valentini, A., Nobre, P. S. S., & Rangel, M. C. (2003). Non-toxic Fe-based catalysts for styrene synthesis: The effect of salt precursors and aluminum promoter on the catalytic properties. Catalysis Today, 85, 49. https://doi.org/10.1016/S0920-5861(03)00193-7

Oliveira, M. L. de, Souza, L. G. M. D., Pereira Neto, R. V., & Lima, J. C. de. (2020). Obtaining and characterization of a composite with polymer matrix and corn cob waste filler. Research, Society and Development, 9(12), e32791210849. https://doi.org/10.33448/rsd-v9i12.10849

Pereira, A. S., Shitsuka, D. M., Pareira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica.[e-book]. Santa Maria: UAB/NTE/UFSM.

Rangel, M. C., Querino, P. S., Borges, S. M. S., Marchettic, S. G., Assaf, J. M., Vásquez, D. P. R., Rodella, C. B., Silva, T. F., Silva, A. H. M., & Ramon, A. P. (2017). Hydrogen purification over lanthanum-doped iron oxides by WGSR. Catalysis Today, 296, 262-271. https://doi.org/10.1016/j.cattod.2017.05.058

Rosário, R. L. do., Santos, R. C., Santos, A. S. dos., Carvalho, A., Brunet, S., & Pontes, L. A. M. (2020). Niobium oxide (Nb2O5) as support for CoMo and NiW catalysts in the hydrodesulfurization reaction of 3-methylthiophene. Research, Society and Development, 9(11), e74391110307. https://doi.org/10.33448/rsd-v9i11.10307

Schertmann, U., & Fischer, W.R. (1973). Natural “Amorphous” ferric Hydroxde. Geoderma, 10, 237. https://doi.org/10.1016/0016-7061(73)90066-9

Serra, J. M., Corma, A., Farrusseng, D., Baumes. L., Mirodatos, C., Flego, C., & Perego, C. (2003). Styrene from toluene by combinatorial catalysis. Catalysis Today, 81(3), 425-436. https://doi.org/10.1016/S0920-5861(03)00142-1

Silva, M. C. C. de P. e., Leite, V. D., Albuquerque, M. V. da C., Cartaxo, A. da S. B., Ramos, R. de O., & Lopes, W. da S. (2020). Treatment of leached from landfill applying Chlorella sp. immobilized in different polymeric matrices. Research, Society and Development, 9(12), e7691210865. https://doi.org/10.33448/rsd-v9i12.10865

Zhang, Y., Wu, L., Wang, Y., Zhang, Y., Wang, H., Wang, X., Chen, X. D., & Wu, Z. (2021). Highly dispersed titania-supported iron oxide catalysts for efficient heterogeneous photo-Fenton oxidation: Influencing factors, synergistic effects and mechanism insight. Journal of Colloid and Interface Science, 587, 467–478. 10.1 https://doi.org/016/j.jcis.2020.12.008

Publicado

14/02/2021

Cómo citar

VARELA, M. do C. R.; BARRAL, B. C. de O. .; LIMA , S. P. de .; LIMA , S. B. . Influencia de los agentes precipitantes sobre el desempeño de los catalizadores de hierro en la deshidrogenación del etilbenceno. Research, Society and Development, [S. l.], v. 10, n. 2, p. e25810212425, 2021. DOI: 10.33448/rsd-v10i2.12425. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12425. Acesso em: 8 jul. 2024.

Número

Sección

Ingenierías