La influencia de la percepción de quorum en la formación de biofilm por Pseudomonas aeruginosa

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i2.12659

Palabras clave:

Factores virulentos; Biofilm; Farmacorresistencia bacteriana; Infección hospitalaria.

Resumen

Las bacterias se organizan de forma agregada en una matriz extracelular, denominada biopelícula, una estructura que protege a las bacterias, la acción de los antimicrobianos y la respuesta inmunitaria del huésped. Así, Pseudomonas aeruginosa, se clasifica como un microorganismo oportunista, responsable de provocar un elevado número de infecciones nosocomiales debido a la resistencia bacteriana desarrollada por factores de virulencia como el biofilm, controlado por el sistema de detección de quórum. De ese modo, el objetivo de este trabajo fue describir la comunicación de las células bacterianas para la formación de biofilm por P. aeruginosa, durante el proceso de colonización e infección en el hospedador. Se siguió una metodología de revisión narrativa, basada en artículos publicados entre 2000 y 2020, indexados en la Biblioteca Virtual de Saúde (BVS), utilizando los descriptores: “quorum sensing”, “Pseudomonas aeruginosa”, " biofilm "," factores de virulencia "," Flagella "," pili "," bacterial adhesion "" polisacárido "" adhesinas "y" biofilm matrix ". Se seleccionaron artículos publicados íntegramente, en inglés, entre 2000 y 2020. Se excluyeron artículos incompletos, duplicados y trabajos académicos como tesis y disertaciones, y se demostró que la resistencia bacteriana de P. aeruginosa a los antibióticos está relacionada con su alta capacidad de adaptación a ambientes hostiles y a los mecanismos de resistencia desarrollados por la especie, especialmente la formación. de biopelícula bacteriana por el sistema de detección de quórum basado en la biosíntesis de moléculas autoinductoras tales como: N-3-oxo-dodecanoil homoserina lactona, N-butanoil-homoserina lactona y 2-heptil-3-hidroxi-4-quinolona, ​​resp. para mediar en la producción de factores de virulencia. Esta revisión abordó los aspectos generales relacionados con la patogenicidad derivada de la comunicación bacteriana durante su proceso de colonización.

Citas

Brasil (2019). Agência Nacional de Vigilância Sanitária. Boletim Segurança do Paciente e Qualidade em Serviços de Saúde nº 20: Avaliação dos indicadores nacionais das IRAS e RM 2018. Brasília: ANVISA. https://bit.ly/2MRfYvE

Brindhadevi, K., LewisOscar, F., Mylonakis, E., Shanmugam, S., Verma, T. N., & Pugazhendhi, A. (2020). Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochemistry. https://doi.org/10.1016/j.procbio.2020.06.001

Bruzaud, J., Tarrade, J., Coudreuse, A., Canette, A., Herry, J. M., de Givenchy, E. T., Darmaninc, T., Guittardc, F., Guilbauda, M., & Bellon-Fontaine, M. N. (2015). Flagella but not type IV pili are involved in the initial adhesion of Pseudomonas aeruginosa PAO1 to hydrophobic or superhydrophobic surfaces. Colloids and Surfaces B: Biointerfaces, 131, 59-66. https://doi.org/10.1016/j.colsurfb.2015.04.036

Byrd, M. S., Sadovskaya, I., Vinogradov, E., Lu, H., Sprinkle, A. B., Richardson, S. H., Ma, L., Ralston, B., Parsek, M. R., Anderson, E. M., Lam, J. S., & Daniel J. Wozniak (2009). Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Molecular microbiology, 73(4), 622-638. https://doi.org/10.1111/j.1365-2958.2009.06795.x

Churchill, M. E., & Chen, L. (2011). Structural basis of acyl-homoserine lactone-dependent signaling. Chemical reviews, 111(1), 68-85. https://doi.org/10.1021/cr1000817

Colvin, K. M., Gordon, V. D., Murakami, K., Borlee, B. R., Wozniak, D. J., Wong, G. C., & Parsek, M. R. (2011). The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog, 7(1), e1001264. https://doi.org/10.1371/journal.ppat.1001264

Colvin, K. M., Irie, Y., Tart, C. S., Urbano, R., Whitney, J. C., Ryder, C., Howell, P. L., Wozniak, D. J., & Parsek, M. R. (2012). The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environmental microbiology, 14(8), 1913-1928. https://doi.org/10.1111/j.1462-2920.2011.02657.x

D'Argenio, D. A., & Miller, S. I. (2004). Cyclic di-GMP as a bacterial second messenger. Microbiology, 150(8), 2497-2502. https://doi.org/10.1099/mic.0.27099-0

Davies, J. C. (2002). Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatric respiratory reviews, 3(2), 128-134. https://doi.org/10.1016/S1526-0550(02)00003-3

Evans, L. R., & Linker, A. (1973). Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. Journal of bacteriology, 116(2), 915-924. https://doi.org/10.1128/JB.116.2.915-924.1973

Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature reviews microbiology, 8(9), 623-633. https://doi.org/10.1038/nrmicro2415

Franklin, M. J., Nivens, D. E., Weadge, J. T., & Howell, P. L. (2011). Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Frontiers in microbiology, 2, 167. https://doi.org/10.3389/fmicb.2011.00167

Friedman, L., & Kolter, R. (2004). Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. Journal of bacteriology, 186(14), 4457-4465. https://doi.org/10.1128/JB.186.14.4457-4465.2004

Gallagher, L. A., McKnight, S. L., Kuznetsova, M. S., Pesci, E. C., & Manoil, C. (2002). Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. Journal of bacteriology, 184(23), 6472-6480. https://doi.org/10.1128/JB.184.23.6472-6480.2002

Gloag, E. S., Turnbull, L., Huang, A., Vallotton, P., Wang, H., Nolan, L. M., Mililli, L., Hunt, C., Lu, J., Osvath, S. R., Monahan, L. G., Cavaliere, R., Charles, I. G., Wand, M. P., Gee, M. L., Prabhakar, R., & Whitchurch, C. B. (2013). Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proceedings of the National Academy of Sciences, 110(28), 11541-11546. https://doi.org/10.1073/pnas.1218898110

Hawver, L. A., Jung, S. A., & Ng, W. L. (2016). Specificity and complexity in bacterial quorum-sensing systems. FEMS microbiology reviews, 40(5), 738-752. https://doi.org/10.1093/femsre/fuw014

Jenal, U., & Malone, J. (2006). Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet., 40, 385-407. https://doi.org/10.1146/annurev.genet.40.110405.090423

Jimenez, P. N., Koch, G., Thompson, J. A., Xavier, K. B., Cool, R. H., & Quax, W. J. (2012). The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews, 76(1), 46-65. https://doi.org/10.1128/MMBR.05007-11

Johansen, H. K., Kovesi, T. A., Koch, C., Corey, M., Høiby, N., & Levison, H. (1998). Pseudomonas aeruginosa and Burkholderia cepacia infection in cystic fibrosis patients treated in Toronto and Copenhagen. Pediatric pulmonology, 26(2), 89-96. https://doi.org/10.1002/(SICI)1099-0496(199808)26:2<89::AID-PPUL3>3.0.CO;2-C

Kariminik, A., Baseri-Salehi, M., & Kheirkhah, B. (2017). Pseudomonas aeruginosa quorum sensing modulates immune responses: an updated review article. Immunology letters, 190, 1-6. https://doi.org/10.1016/j.imlet.2017.07.002

Kievit, T. R., Gillis, R., Marx, S., Brown, C., & Iglewski, B. H. (2001). Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Applied and environmental microbiology, 67(4), 1865-1873. https://doi.org/10.1128/AEM.67.4.1865-1873.2001

Lee, J., Wu, J., Deng, Y., Wang, J., Wang, C., Wang, J., Chang, C., Dong, Y., Williams, P., & Zhang, L. H. (2013). A cell-cell communication signal integrates quorum sensing and stress response. Nature chemical biology, 9(5), 339. https://doi.org/10.1038/nchembio.1225

MacFaddin, J. F. (1985). Media for the isolation-cultivation-identification-maintenance of medical bacteria, vol. 1 Williams & Wilkins. Baltimore, MD.

Mann, E. E., & Wozniak, D. J. (2012). Pseudomonas biofilm matrix composition and niche biology. FEMS microbiology reviews, 36(4), 893-916. https://doi.org/10.1111/j.1574-6976.2011.00322.x

McKnight, S. L., Iglewski, B. H., & Pesci, E. C. (2000). The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. Journal of bacteriology, 182(10), 2702-2708. https://doi.org/10.1128/JB.182.10.2702-2708.2000

Montanaro, L., Poggi, A., Visai, L., Ravaioli, S., Campoccia, D., Speziale, P., & Arciola, C. R. (2011). Extracellular DNA in biofilms. The International journal of artificial organs, 34(9), 824-831. https://doi.org/10.5301/ijao.5000051

Mukherjee, S., Moustafa, D. A., Stergioula, V., Smith, C. D., Goldberg, J. B., & Bassler, B. L. (2018). The PqsE and RhlR proteins are an autoinducer synthase–receptor pair that control virulence and biofilm development in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 115(40), E9411-E9418. https://doi.org/10.1073/pnas.1814023115

Nakagami, G., Minematsu, T., Morohoshi, T., Yamane, T., Kanazawa, T., Huang, L., Asada, M., Nagase, T., Ikeda, S., Ikeda, T., & Sanada, H. (2015). Pseudomonas aeruginosa quorum-sensing signaling molecule N-3-oxododecanoyl homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblasts. Bioscience, Biotechnology, and Biochemistry, 79(10), 1719-1724. https://doi.org/10.1080/09168451.2015.1056509

O'Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular microbiology, 30(2), 295-304. https://doi.org/10.1046/j.1365-2958.1998.01062.x

Palleroni, N. J. (2010). The Pseudomonas story. Environmental microbiology, 12(6), 1377-1383. https://doi.org/10.1111/j.1462-2920.2009.02041.x

Palleroni, N. J. (2015). Pseudomonas. Bergey’s manual of systematics of archaea and bacteria. https://books.google.com.br/

Pattnaik, S. S., Ranganathan, S., Ampasala, D. R., Syed, A., Ameen, F., & Busi, S. (2018). Attenuation of quorum sensing regulated virulence and biofilm development in Pseudomonas aeruginosa PAO1 by Diaporthe phaseolorum SSP12. Microbial pathogenesis, 118, 177-189. https://doi.org/10.1016/j.micpath.2018.03.031

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Retrieved from: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pizarro-Cerdá, J., & Cossart, P. (2006). Bacterial adhesion and entry into host cells. Cell, 124(4), 715-727. https://doi.org/10.1016/j.cell.2006.02.012

Ramos, H. C., Rumbo, M., & Sirard, J. C. (2004). Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends in microbiology, 12(11), 509-517. https://doi.org/10.1016/j.tim.2004.09.002

Rampioni, G., Pustelny, C., Fletcher, M. P., Wright, V. J., Bruce, M., Rumbaugh, K. P., Heeb, S., Cámara, M., & Williams, P. (2010). Transcriptomic analysis reveals a global alkyl‐quinolone‐independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts. Environmental microbiology, 12(6), 1659-1673. https://doi.org/10.1111/j.1462-2920.2010.02214.x

Rasamiravaka, T., Labtani, Q., Duez, P., & El Jaziri, M. (2015). The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. BioMed research international, 2015. https://doi.org/10.1155/2015/759348

Römling, U., Galperin, M. Y., & Gomelsky, M. (2013). Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiology and Molecular Biology Reviews, 77(1), 1-52. https://doi.org/10.1128/MMBR.00043-12

Rybtke, M., Hultqvist, L. D., Givskov, M., & Tolker-Nielsen, T. (2015). Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. Journal of molecular biology, 427(23), 3628-3645. https://doi.org/10.1016/j.jmb.2015.08.016

Ryder, C., Byrd, M., & Wozniak, D. J. (2007). Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Current opinion in microbiology, 10(6), 644-648. https://doi.org/10.1016/j.mib.2007.09.010

Sharma, G., Rao, S., Bansal, A., Dang, S., Gupta, S., & Gabrani, R. (2014). Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals, 42(1), 1-7. https://doi.org/10.1016/j.biologicals.2013.11.001

Simpson, J. A., Smith, S. E., & Dean, R. T. (1993). Alginate may accumulate in cystic fibrosis lung because the enzymatic and free radical capacities of phagocytic cells are inadequate for its degradation. Biochemistry and molecular biology international, 30(6), 1021-1034. Retrived from: https://europepmc.org/article/med/8220249

Skariyachan, S., Sridhar, V. S., Packirisamy, S., Kumargowda, S. T., & Challapilli, S. B. (2018). Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia microbiologica, 63(4), 413-432. https://doi.org/10.1007/s12223-018-0585-4

Soheili, V., Tajani, A. S., Ghodsi, R., & Bazzaz, B. S. F. (2019). Anti-PqsR compounds as next-generation antibacterial agents against Pseudomonas aeruginosa: A review. European journal of medicinal chemistry, 172, 26-35. https://doi.org/10.1016/j.ejmech.2019.03.049

Tan, Q., Ai, Q., Xu, Q., Li, F., & Yu, J. (2018). Polymorphonuclear leukocytes or hydrogen peroxide enhance biofilm development of mucoid Pseudomonas aeruginosa. Mediators of inflammation, 2018. https://doi.org/10.1155/2018/8151362

Taylor, P. K., Yeung, A. T., & Hancock, R. E. (2014). Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. Journal of Biotechnology, 191, 121-130. https://doi.org/10.1016/j.jbiotec.2014.09.003

Vasudevan, R. (2014). Biofilms: microbial cities of scientific significance. J Microbiol Exp, 1(3), 84-97. 10.15406/jmen.2014.01.00014

Wang, S., Liu, X., Liu, H., Zhang, L., Guo, Y., Yu, S., Wozniak, D. J., & Ma, L. Z. (2015). The exopolysaccharide Psl–eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa. Environmental microbiology reports, 7(2), 330-340. https://doi.org/10.1111/1758-2229.12252

World Health Organization (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics, https://www.who.int/medicines/ publications/global-priority-list-antibiotic-resistant-bacteria/en/.

Wu, Y. K., Cheng, N. C., & Cheng, C. M. (2019). Biofilms in chronic wounds: pathogenesis and diagnosis. Trends in biotechnology, 37(5), 505-517. https://doi.org/10.1016/j.tibtech.2018.10.011

Publicado

18/02/2021

Cómo citar

NEVES , M. L. da R. .; NUNES, L. E.; ROCHA, W. R. V. da .; XIMENES , E. C. P. de A. .; ALBUQUERQUE , M. C. P. de A. La influencia de la percepción de quorum en la formación de biofilm por Pseudomonas aeruginosa. Research, Society and Development, [S. l.], v. 10, n. 2, p. e33910212659, 2021. DOI: 10.33448/rsd-v10i2.12659. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12659. Acesso em: 25 ago. 2024.

Número

Sección

Ciencias de la salud