El modelo experimental de dieta alta en grasas es útil para evaluar el agravamiento del daño hepático asociado a comorbilidades
DOI:
https://doi.org/10.33448/rsd-v10i3.13012Palabras clave:
Hígado graso; Modelos animales; Dieta; Enfermedad del hígado graso no alcohólico.Resumen
Objetivo: Desarrollar un modelo de dieta alta en grasas (HFD) que por sí solo no desarrolle la enfermedad del hígado graso no alcohólico (DHGNA), lo que permite estudiar la asociación de comorbilidades con el modelo de dieta alta en grasas. Material y métodos: Las ratas se dividieron en 2 grupos: dieta estándar y dieta alta en grasas, cada grupo con 8 animales. Las ratas fueron sometidas al análisis de los siguientes parámetros en tejido hepático: dosificación de malondialdehído (MDA), glutatión (GSH) y actividad mieloperoxidasa (MPO). También se evaluaron histopatológicamente muestras de hígado para determinar los niveles séricos de alanina aminotransferasa (ALT), aspartato aminotransferasa (AST), albúmina (ALB), fosfatasa alcalina (FAL), ácido úrico y colesterol total (TC), calcio (CA), urea y HDL. . Resultados: Los resultados mostraron que hubo una diferencia significativa en MDA, GSH, colesterol total (CT), ALT, ALB, ácido úrico (AU), calcio (CA) y HDL. La evaluación histopatológica presentó una puntuación baja, insuficiente para la clasificación de EHGNA. Conclusión: Este estudio demostró que el modelo de dieta alta en grasas no causó NAFLD. Este hallazgo permite utilizar la dieta rica en grasas caracterizada en este estudio para investigar las posibles alteraciones hepáticas provocadas por otras comorbilidades.
Citas
Brunt, E. M. & Tiniakos, D. G. (2009). Fatty Liver Disease. In Surgical Pathology of the GI Tract, Liver, Biliary Tract and Pancreas (1087-1114). Elsevier Inc. https://doi.org/10.1016/B978-141604059-0.50044-8.
Buettner, R. et al. (2006). Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol; 6(3), 485– 501. https:// doi.org/10.1677/jme.1.01909.
Chalasani, N. et al. (2012). The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases. Hepatology, (55). https:// doi.org/ 10.1002/hep.25762.
Chaves, L. S., Nicolau, L. A. & Silva, R. O. et al. (2013). Antiinflammatory and antinociceptive effects in mice of a sulfated polysaccharide fraction extracted from the marine red alga e Gracilaria caudata. Immunopharmacol Immunotoxicol, 35, 93-100. https://doi.org/ 10.3109/08923973.2012.707211.
Della, P. G. et al. (2017). Isocaloric Dietary Changes and Non-Alcoholic Fatty Liver Disease in High Cardiometabolic Risk Individuals. Nutrients, 26(9), 1065- 10. https:// doi.org/ 10.3390/nu9101065.
Dou et al. (2018). Glutathione disulfide sensitizes hepatocytes to TNFα-mediated cytotoxicity via IKK-β S-glutathionylation: a potential mechanism underlying non-alcoholic fatty liver disease. Experimental & Molecular Medicine, 50(7). https://doi.org/10.1038/s12276-017-0013-x.
Eshraghian, A. (2017). Bone metabolism in non-alcoholic fatty liver disease: vitamin d status and bone mineral density. Minerva endocrinológica, June;42(2), 164-72. https://doi.org/10.23736/S0391-1977.16.02587-6.
Ghibaudi, L. et al. (2002). Fat intake affects adiposity, comorbidity factors, and energy metabolism of sprague-dawley rats. Obes Res., 10, 956–963. https://doi.org/10.3390/nu9101072.
Herck, V. M., Vonghia, L. & Francque, S. M. (2017) Animal Models of Nonalcoholic Fatty Liver Disease - A Starter’s Guide. Nutrients, 9(10), 1072. https://doi.org/10.1038/oby.2002.130.
Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444:860-7. https://doi.org/10.1038/nature05485.
Hu, Xiao-Yu et al. (2018). Risk Factors and Biomarkers of Non-Alcoholic Fatty Liver Disease: An Observational Cross-Sectional Population Survey. BMJ Open, 12. https://doi.org/ 10.1136/bmjopen-2017-019974.
Ibrahim, S.H., Hirsova, P., Malhi, H. & Gores, G.J. (2016) Animal models of nonalcoholic steatohepatitis: Eat, delete, and inflame. Dig. Dis. Sci., 61, 1325–1336. https://doi.org/ 10.1007/s10620-015-3977-1.
Kanuri, G. & Bergheim, I. (2013). In Vitro and in Vivo Models of Non-Alcoholic Fatty Liver Disease (NAFLD). Int J Mol Sci. 14:11963–80. https://doi.org/ 10.3390/ijms140611963.
Keefe, E. B. (2001). Liver transplantation: current status and novel approaches to liver. Gastroenterology, 120(3), 749-62. https://doi.org/10.1053/gast.2001.22583.
Khan, et al. (2015). Carbon tetrachloride-induced lipid peroxidation and hyperglycemia in rat: A novel study, Toxicol. Ind. Health, 31, 546–553. https://doi.org/ 10.1177/0748233713475503.
Krishan, S. (2016). Correlation between non-alcoholic fatty liver disease (NAFLD) and dyslipidemia in type 2 diabetes. Diab Met Syndr: Clin Res Ver, 10, 77-81. https://doi.org/ 10.1016/j.dsx.2016.01.034.
Kleiner, D. E., Brunt, E. M. & Van Natta, M. et al. (2005). Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology; 41, 1313-21. https://doi.org/ 10.1002/hep.20701
Kulkarni, N. M et al. (2014). A novel animal model of metabolic syndrome with non-alcoholic fatty liver disease and skin inflammation. Pharmaceutical Biology, 53(8), 1110–1117. https://doi.org/ 10.3109/13880209.2014.960944.
Lau, J. K. C. & Zhang, X. Y. U. J. (2017). Animal models of non‐alcoholic fatty liver disease: current perspectives and recent advances. The Journal of Pathology, 241(1), 36-44. https://doi.org/ 10.1002/path.4829.
Lozano, et al. (2016). High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutrition & Metabolism, 13(15). https://doi.org/ 10.1186/s12986-016-0074-1.
Ly, F. et al. (2017). Deficiency promotes nonalcoholic steatohepatitis via regulation of hepatic oxidative stress. Biochem. Biophys. Res. Commun,, 486, 264–269. https://doi.org/ 10.1016/j.bbrc.2017.03.023.
Mcdonald, S. D. et al. (2011). “Adverse metabolic effects of a hypercaloric, high-fat diet in rodents precede observable changes in body weight”. Nutrition Research, 31, 707–71. https://doi.org/ 10.1016/j.nutres.2011.08.009.
Mikolasevic, I. et al. (2014). Nonalcoholic fatty liver disease: a new factor that interplays between inflammation, malnutrition, and atherosclerosis in elderly hemodialysis patients. Clin. Interv. Aging. 9, 1295–1303. https://doi.org/ 10.2147/CIA.S65382.
Neuman, M. G.; Cohen, L. B. & Nanau, R. M. (2014).Biomarkers in nonalcoholic fatty liver disease. Canadian Journal of Gastroenterology & Hepatology, 28(11), 607-618.
Noureddin, M. D. & Rohit, L. (2012). Nonalcoholic fatty liver disease: indications for liver biopsy and noninvasive biomarkers mazen. Clin. Liver Dis., 1, 25–38. https://doi.org/10.1002/cld.65.
Polimeni, L, et al. (2015). Oxidative stress: New insights on the association of non-alcoholic fatty liver disease and atherosclerosis. World J Hepatol., 7(10), 1325–36. https://doi.org/ 10.4254/wjh.v7.i10.1325.
Sattar, N., Forrest, E. & Preiss, D. (2014). Non-alcoholic fatty liver disease. BMJ, 349, 4596. https://doi.org/ 10.1136/bmj.g4596.
Sedlak, J. & Lindsay, R.H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 24, 192–205.
Takahashi, Y., Soejima, Y. & Fukusato, T. (2012) Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol, 18:2300–8. https://doi.org/ 10.3748/wjg.v18.i19.2300.
Takaki, A.; Kawai, D. & Yamamoto, K. (2013). Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int. J. Mol. Sci., 14, 20704 –20728. https://doi.org/ 10.3390/ijms141020704.
Tandra, S.; Yeh, M. M. & Brunt, E. M. et al. (2011). Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J Hepatol., 55, 654–659. https://doi.org/ 10.1016/j.jhep.2010.11.021.
Tannaz, E., Puneeta, T. & Maitreyi R. (2017). Dietary Composition Independent of Weight Loss in the Management of Non-Alcoholic Fatty Liver Disease. Nutrients, 9, 800. https://doi.org/ 10.3390/nu9080800.
Tetri L. H. et al. (2008). Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalente. Am J Physiol Gastrointest Liver Physiol, 295, G987-G995. https://doi.org/ 10.1152/ajpgi.90272.2008.
Toshimitsu, K. et al. (2007). Dietary habits and nutrient intake in non-alcoholic steatohepatitis. Nutrition, 23, 46-52. https://doi.org/ 10.1016/j.nut.2006.09.004.
Thulin, P. et al. (2008). PPARalpha regulates the hepatotoxic biomarker alanine aminotransferase (ALT1) gene expression in human hepatocytes. Toxicol Appl Pharmacol, 231, 1–9. https://doi.org/ 10.1016/j.taap.2008.03.007.
Uchiyama, M., & Mihara M. (1978). Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Ana Biochem, 86, 271–278. https://doi.org/10.1016/0003-2697(78)90342-1.
Wu, L., Li, T. & Wen, Y.Q. Li. (2007). Protective effects of echinacoside on carbontetrachloride-induced hepatotoxicity in rats, Toxicol., 232, 50–56. https://doi.org/ 10.1016/j.tox.2006.12.013.
Yesolova Z. et al. (2005). Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic fatty liver disease. Am J Gastroenterol, 2005, 100(4), 850–5. https://doi.org/ 10.1111/j.1572-0241.2005.41500.x.
Yulong, W. U. et al. (2018). Chicory (Cichorium intybus L.) polysaccharides attenuate highfat diet induced non-alcoholic fatty liver disease via AMPK activation. Biomac. https://doi.org/ 10.1016/j.ijbiomac.2018.06.140.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Ayane Araújo Rodrigues; Even Herlany Pereira Alves; Raissa Silva Bacelar de Andrade; Luiz Felipe de Carvalho França; Larissa dos Santos Pessoa; Felipe Rodolfo Pereira da Silva; David Di Lenardo; Hélio Mateus Silva Nascimento; André dos Santos Carvalho; Francisca Beatriz de Melo Sousa; Victor Brito Dantas Martins; André Luiz dos Reis Barbosa; Jand-Venes Rolim Medeiros; Any Carolina Cardoso Guimarães Vasconcelos; Daniel Fernando Pereira Vasconcelos
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.