Evaluación de la resistencia a la compresión del hormigón con metacaolín mediante diferentes técnicas de refrentado

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i3.13341

Palabras clave:

Hormigón; Resistencia a la compresión; Metacaolín; Métodos de refrentado.

Resumen

La adición o sustitución parcial de cemento por adiciones minerales como el metacaolín ha sido ampliamente utilizada en la producción de hormigón de alta resistencia y durabilidad, debido a su acción puzolánica, que permite la reducción del consumo de cemento. La determinación de las propiedades mecánicas de estos materiales se realiza mediante ensayos, como la resistencia a la compresión. Para esta prueba, existen diferentes técnicas de refrentado para probetas, como azufre y neopreno, indicadas para diferentes clases de resistencia. El presente estudio tuvo como objetivo principal caracterizar el comportamiento, en estado endurecido, del hormigón producido con cemento Portland de alta resistencia inicial (CPV-ARI) y metacaolín, y evaluar diferentes métodos de refrentado. Tres grupos de probetas dosificadas por el método IPT-EPUSP, con mezclas 1: 3, 1: 5 y 1: 6, y sustituciones de cemento al 8 y 10% por metacaolín, fueron sometidos a un ensayo de resistencia a la compresión a las edades de 28 días, con refrentado de neopreno, y 90 días, con azufre. Se observó un aumento de la resistencia con la adición de metacaolín, tanto a los 28 como a los 90 días. Al comparar los resultados en las dos edades, hubo un aumento en la resistencia para las mezclas 1: 5 y 1: 6 y una reducción para la mezcla 1: 3. Esto puede explicarse por la alta resistencia lograda por esta mezcla. Como el método de refrentado utilizado fue el azufre, se confirma la inexactitud de los resultados para resistencias superiores a 50 MPa.

Citas

Ashish, D. K. (2019). Concrete made with waste marble powder and supplementary cementitious material for sustainable development. Journal of Cleaner Production, 211, 716-729.

American Society for Testing and Materials (2017). ASTM C618-17a - Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA, USA.

American Society for Testing and Materials (2018). ASTM C39/C39M-18 - Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA, USA.

American Society for Testing and Materials (2015). ASTM C1231/C1231M-15 - Standard practice for use of unbonded caps in determination of compressive strength of hardened cylindrical concrete specimens. West Conshohocken, PA, USA.

Associação Brasileira de Normas Técnicas (2015). NBR 5738:2015 - Concrete - Procedure for molding and curing concrete test specimens. Rio de Janeiro, Brazil.

Barbosa, F. R, Mota, J. M. F, Costa e Silva, A. J., & Oliveira, R. A. (2009) Análise da Influência do Capeamento de Corpo-de-Prova Cilíndrico na Resistência à Compressão do Concreto. Proceedings: 51º Congresso Brasileiro de Concreto.

Barluenga G., Palomar I. & Puentes J. (2015). Hardened properties and microstructure of SCC with mineral additions. Construction and Building Materials, 94, 728-736.

Bucher, H. R. E. & Rodrigues Filho, H. C. (1983) Argamassas de enxofre para capeamento de corpos de prova. Seminário sobre controle de resistência do concreto, IBRACON, São Paulo.

Bucher R., Diederich P., Escadeillas G., & Cyr M. (2017). Service life of metakaolin-based concrete exposed to carbonation Comparison with blended cement containing fly ash, blast furnace slag and limestone filler. Cement and Concrete Research, 99, 18-29.

Comité Mercosur de Normalización (1996). Hormigón - Preparación de las bases de probetas y testigos cilíndricos para el ensayo de compresión.

Donatello S. & Tyrer M., Cheeseman C.R (2010). Comparison of test methods to assess pozzolanic activity. Cement and Concrete Composites, 32, 121-127.

Duan P., Shui Z., Chen W., & Shen C. (2013). Efficiency of mineral admixtures in concrete: Microstructure, compressive strength and stability of hydrate phases. Applied Clay Science, 83-84, 115-121.

Ferreira, F. C., Coutinho, Y., & Carneiro, A. M. P. (2021). Evaluation of mechanical properties of concrete produced with binary and ternary mixtures of aggregate. Research, Society and Development, 10(1), e43410111948. 10.33448/rsd-v10i1.11948. https://rsdjournal.org/index.php/rsd/article/view/11948. Access: 26 Feb. 2021.

Folagbade, S.O. (2016). Absorption characteristics of cement combination concrete containing portland cement, fly ash, and metakaolin. Civil Engineering Dimension, 18, 57-64.

Kelestemur O., Demirel B. (2015). Effect of metakaolin on the corrosion resistance of structural lightweight concrete. Construction and Building Materials, 81, 172-178.

Mastali M., Dalvand A., Sattarifard A.R., Abdollahnejad Z., Nematollahi B., Sanjayan J.G., & Illikainen M. (2019). A comparison of the effects of pozzolanic binders on the hardened-state properties of high-strength cementitious composites reinforced with waste tire fibers. Composites Part B, 162, 134-153.

Mehta P. K. & Monteiro P. J. M. (2014). Concreto: estrutura, propriedades e materiais. PINI.

Nadeem A., Memon S. A., & Lo T. Y. (2014). The performance of fly ash and metakaolin concrete at elevated temperatures. Construction and Building Materials, 62, 67-76.

Paiva H., Velosa A., Cachim P., & Ferreira V. M. (2012). Effect of metakaolin dispersion on the fresh and hardened state properties of concrete. Cement and Concrete Research, 42, 607-612.

Shen P., Lu L., Chen W., Wang F., & Hu S. (2017). Efficiency of metakaolin in steam cured high strength concrete. Construction and Building Materials, 152, 357-366.

Shi X., Yang Z., Liu Y., & Cross D. (2011). Strength and corrosion properties of portland cement mortar and concrete with mineral admixtures. Construction and Building Materials, 25, 3245-3256.

Shi Z., Shui Z., Li Q., & Geng H. (2015). Combined effect of metakaolin and sea water on performance and microstructures of concrete. Construction and Building Materials, 74, 57-64.

Tafraoui A., Escadeillas G., & Vidal T. (2016). Durability of the ultra-high performances concrete containing metakaolin. Construction and Building Materials, 112, 980-987.

Talero, R. (2005). Performance of metakaolin and portland cements in ettringite formation as determined by ASTM C 452-68: kinetic and morphological differences. Cement Concrete Research, 35(7), 1269-84.

Wianglor K., Sinthupinyo S., Piyanworapaiboon M., & Chaipanich A. (2017). Effect of álcali-activated metakaolin cement on compressive strength of mortars. Applied Clay Science, 141, 272-279.

Wu J., Zhang Z., Zhang Y., & Li D. (2018). Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends. Construction and Building Materials, 168, 771-779.

Descargas

Publicado

17/03/2021

Cómo citar

SÁ, A. W. dos S. G. de .; COUTINHO, Y.; SOARES, R. G. P. .; FERREIRA, F. C. .; CARNEIRO, A. M. P. . Evaluación de la resistencia a la compresión del hormigón con metacaolín mediante diferentes técnicas de refrentado. Research, Society and Development, [S. l.], v. 10, n. 3, p. e31510313341, 2021. DOI: 10.33448/rsd-v10i3.13341. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13341. Acesso em: 15 ene. 2025.

Número

Sección

Ingenierías