Pronóstico de la demanda brasileña de biodiésel mediante redes neuronales artificiales

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i5.13381

Palabras clave:

Biodiésel; Brasil; Redes neuronales artificiales; Estacionalidad; Previsión de demanda.

Resumen

El biodiésel es un combustible renovable que se utiliza como alternativa para sustituir total o parcialmente el diésel de petróleo. El porcentaje obligatorio de este biocombustible agregado al diesel fósil en Brasil ha aumentado constantemente. Predecir la cantidad de biodiésel que se demandará en el futuro es fundamental para mantener el saldo excedentario nacional y ayudar en la toma de decisiones del sector. Las redes neuronales artificiales (ANN) son útiles para pronosticar diferentes tipos de demandas. Por lo tanto, este estudio utiliza redes neuronales artificiales para pronosticar la demanda brasileña de biodiesel. La ANN propuesta en este trabajo abarcó datos obtenidos de un modelo de pronóstico de demanda no paramétrico basado en series de tiempo. El modelo no paramétrico consideró las tendencias y la estacionalidad de los datos para pronosticar la demanda de biodiesel. Se modelaron 100 redes de perceptrones multicapa con propagación de errores para dos escenarios de biodiesel brasileño (uso de 15% (B15) o 20% (B20) de biodiesel a diesel). Todos los valores de R2 superiores a 0,99 para las redes simuladas y RMSE <2% demuestran que el modelo de ARN desarrollado tiene una alta precisión en la predicción de la demanda de biodiésel. La mejor red para cada escenario se determinó mediante análisis heurístico de RMSE. Los resultados de los mejores ARN simulados mostraron un crecimiento en la demanda de biodiésel de 2019 a 2050 de 150,63% para B15 y 229,73% para B20. Ambos escenarios de crecimiento de la demanda se justifican por el aumento gradual del porcentaje obligatorio de biodiésel a diésel. Así, los crecientes resultados de la demanda de biodiesel evidencian la búsqueda del país de un combustible no tóxico, biodegradable y renovable en su matriz energética.

Citas

Acheampong, A. O., & Boateng, E. B. (2019). Modelling carbon emission intensity: Application of artificial neural network. Journal of Cleaner Production, 225, 833-856. doi: 10.1016/j.jclepro.2019.03.352

ANP – Agência Nacional de Petróleo, Gás Natural e Biocombustível. (2020). Biodiesel. Retrieved July 10, 2020, from http://www.anp.gov.br/biocombustiveis/biodiesel

Betiku, E., Osunleke, A. S., Odude, V. O., Bamimore, A., Oladipo, B., Okeleye, A. A., & Ishola, N. B. (2021). Performance evaluation of adaptive neuro-fuzzy inference system, artificial neural network and response surface methodology in modeling biodiesel synthesis from palm kernel oil by transesterification. Biofuels, 12(3), 339-354. doi: 10.1080/17597269.2018.1472980

Brahimi, T., Alhebshi, F., Alnabilsi, H., Bensenouci, A., & Rahman, M. (2019). Prediction of Wind Speed Distribution Using Artificial Neural Network: The Case of Saudi Arabia. Procedia Computer Science, 163, 41-48. doi: 10.1016/j.procs.2019.12.084.

Carmo, B. B. T., Pontes, H. L. J., Albertin, M. R., Neto, J. F. B., & da Silva Dutra, N. G. (2009). Avaliação da demanda por biodiesel em função de um modelo de previsão de demanda por diesel. Revista Produção Online, 9(3),511–535.

Chidambaranathan, B., Gopinath, S., Aravindraj, R., Devaraj, A., Krishnan, S. G., & Jeevaananthan, J. K. S. (2020). The production of biodiesel from castor oil as a potential feedstock and its usage in compression ignition Engine: A comprehensive review. Materials Today: Proceedings, 33, 84-92. doi: 10.1016/j.matpr.2020.03.205

CNPE – Conselho Nacional de Política Energética. (2018). Resolução CNPE n° 16, de 29 de outubro de 2018. Retrieved July 10, 2020, from https://www.gov.br/mme/pt-br/assuntos/conselhos-e-comites/cnpe/resolucoes-do-cnpe/arquivos/2018/resolucao_16_cnpe_29-10-18.pdf

Đozić, D. J., & Urošević, B. D. G. (2019). Application of artificial neural networks for testing long-term energy policy targets. Energy, 174, 488-496. doi: 10.1016/j.energy.2019.02.191

Ebrahimabadi, A., Azimipour, M., & Bahreini, A. (2015). Prediction of roadheaders' performance using artificial neural network approaches (MLP and KOSFM). Journal of Rock Mechanics and Geotechnical Engineering, 7(5), 573-583. doi: 10.1016/j.jrmge.2015.06.008

Ekonomou, L. (2010). Greek long-term energy consumption prediction using artificial neural networks. Energy, 35(2), 512-517. doi: 10.1016/j.energy.2009.10.018

Farobie, O., Hasanah, N., & Matsumura, Y. (2015). Artificial neural network modeling to predict biodiesel production in supercritical methanol and ethanol using spiral reactor. Procedia environmental sciences, 28, 214-223. doi: 10.1016/j.proenv.2015.07.028

Gupta, N., & Nigam, S. (2020). Crude Oil Price Prediction using Articial Neural Network. Procedia Computer Science. 170, 642-647. doi:10.1016/j.procs.2020.03.136.

Jayalakshmi, T., & Santhakumaran, A. (2011). Statistical normalization and back propagation for classification. International Journal of Computer Theory and Engineering, 3(1), 1793-8201. Retrieved from http://www.ijcte.org/papers/288-L052.pdf

Karunathilake, S. L., & Nagahamulla, H. R. (2017, September). Artificial neural networks for daily electricity demand prediction of Sri Lanka. In 2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer) (pp. 1-6). IEEE.

Katsatos, A. L., & Moustris, K. P. (2019). Application of Artificial Neuron Networks as energy consumption forecasting tool in the building of Regulatory Authority of Energy, Athens, Greece. Energy Procedia, 157, 851-861. doi: 10.1016/j.egypro.2018.11.251

Kochak, A., & Sharma, S. (2015). Demand forecasting using neural network for supply chain management. International journal of mechanical engineering and robotics research, 4(1), 96-104. doi: 10.18178/ijmerr.

Ling, Y., Yue, Q., Chai, C., Shan, Q., Hei, D., & Jia, W. (2020). Nuclear accident source term estimation using Kernel Principal Component Analysis, Particle Swarm Optimization, and Backpropagation Neural Networks. Annals of Nuclear Energy, 136, 107031. doi: 10.1016/j.anucene.2019.107031

Ministério de Minas e Energia, Empresa de Pesquisa Energética - MME/EPE. (2020). Plano Decenal de Expansão de Energia 2029. Retrieved July 03, 2020, from https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/plano-decenal-de-expansao-de-energia-2029

Ministério do Meio Ambiente. (2020). Acordo de Paris. Retrieved July 10, 2020, from https://www.mma.gov.br/clima/convencao-das-nacoes-unidas/acordo-de-paris

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria: UFSM, NTE.

Queiroz, A. A., & Cavalheiro, D. (2003). Método de previsão de demanda e detecção de sazonalidade para o planejamento da produção de indústrias de alimentos. Anais do Encontro Nacional de Engenharia de Produção, 23.

Rajakarunakaran, S., Venkumar, P., Devaraj, D., & Rao, K. S. P. (2008). Artificial neural network approach for fault detection in rotary system. Applied Soft Computing, 8(1), 740-748. doi: 10.1016/j.asoc.2007.06.002

Selvan, S. S., Pandian, P. S., Subathira, A., & Saravanan, S. (2018). Artificial neural network modeling-coupled genetic algorithm optimization of supercritical methanol transesterification of Aegle marmelos oil to biodiesel. Biofuels, 1-9. doi: 10.1080/17597269.2018.1542567

Singh, D., Sharma, D., Soni, S. L., Sharma, S., Sharma, P. K., & Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262, 116553. doi:10.1016/j.fuel.2019.116553.

Sivamani, S., Selvakumar, S., Rajendran, K., & Muthusamy, S. (2019). Artificial neural network–genetic algorithm-based optimization of biodiesel production from Simarouba glauca. Biofuels, 10(3), 393-401. doi: 10.1080/17597269.2018.1432267

Thakur, A. K., Mer, K. K. S., & Kaviti, A. (2018). An artificial neural network approach to predict the performance and exhaust emissions of a gasoline engine using ethanol–gasoline blended fuels. Biofuels, 9(3), 379-393.doi: 10.1080/17597269.2016.1271630

Tubino, D. F. (2007). Planejamento e controle da produção: teoria e prática. São Paulo: Atlas.

Turp, S. M., Eren, B., & Ates, A. (2011). Prediction of adsorption efficiency for the removal of nickel (II) ions by zeolite using artificial neural network (ANN) approach. Fresenius Environmental Bulletin, 20(12), 3158-3165. Retrieved from https://d1wqtxts1xzle7.cloudfront.net/30548310/02-FEB-Prediction_of_adsorption_efficiency_for_the_removal_of.pdf?1360286886=&response-content-disposition=inline%3B+filename%3DPREDICTION_OF_ADSORPTION_EFFICIENCY_FOR.pdf&Expires=1618498882&Signature=LbccMwk3lLWMu4GcTriv6aoz~E1~LYk9uddxkeqQJBigkGd3YhuK46-n1WMxg1HQn0TBIv7VdCqwLr9ecbNEmHfYAfjmhYbSV2M5mwaOB1zP43UcFcDpGBYM2NeEEhgyvA~QFKfmmW2vOyut5xFIs~dibp~Eeq5u7kP1HqIcYOL5FpRg0~Sz5LB5aOO~WG-ejZTEQnbXN8pL0UsamqEvIKsz3QrQtKz49H1ykRmFGrMRRkY3U9h5EAnm~V3l1fdIfmc1TtKxKj5BakgLAeo2Qd013Ip65wDmHK6o6C4~VcX0UYd5pwk4MOSb4L0lSuu0sOV-BAJ0WrVvPKRqnvSumg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

União Brasileira do biodiesel e bioquerosene – Ubrabio. (2016). Energia para combater as mudanças climáticas. Biodiesel em foco; 9–17. Retrieved July 5, 2020, from https://issuu.com/ubrabio/docs/biodiesel_em_foco_-_ed_07-2016-web/17

Vastrad, C. (2013). Performance analysis of neural network models for oxazolines and oxazoles derivatives descriptor dataset. International Journal of Information Sciences and Techniques (IJIST), 3(6). doi: 10.5121/ijist.2013.3601

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International journal of forecasting, 14(1), 35-62.

Publicado

02/05/2021

Cómo citar

CAIRES, K. V. L. .; SIMONELLI, G. . Pronóstico de la demanda brasileña de biodiésel mediante redes neuronales artificiales . Research, Society and Development, [S. l.], v. 10, n. 5, p. e17410513381, 2021. DOI: 10.33448/rsd-v10i5.13381. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13381. Acesso em: 23 nov. 2024.

Número

Sección

Ingenierías