Previsão da demanda brasileira de biodiesel utilizando redes neurais artificiais

Autores

DOI:

https://doi.org/10.33448/rsd-v10i5.13381

Palavras-chave:

Biodiesel; Brasil; Redes neurais artificiais; Sazonalidade; Previsão de demanda.

Resumo

O biodiesel é um combustível renovável utilizado como uma alternativa para substituir de modo total ou parcial o diesel de petróleo. A porcentagem obrigatória desse biocombustível adicionado ao diesel fóssil no Brasil tem sido elevada constantemente. Prever a quantidade de biodiesel que será demandada futuramente é essencial para manter o balanço nacional superavitário e auxiliar nas tomadas de decisões do setor. As redes neurais artificiais (RNAs) são úteis para previsão de diferentes tipos de demandas. Assim sendo, esse estudo utiliza redes neurais artificiais na previsão da demanda brasileira de biodiesel. A RNA proposta neste trabalho englobou dados obtidos de um modelo não-paramétrico de previsão de demanda baseado em séries temporais. O modelo não-paramétrico considerou as tendências e sazonalidade dos dados para previsão da demanda de biodiesel. Foram modeladas 100 redes do tipo perceptron multicamadas com retropropagação do erro para dois cenários do biodiesel brasileiro (uso de 15% (B15) ou 20% (B20) de biodiesel ao diesel). Todos os valores de R2 maiores que 0,99 para as redes simuladas e RMSE<2% comprovam que o modelo de RNA desenvolvido possui alta precisão em prever a demanda de biodiesel. A melhor rede para cada cenário foi determinada por análise heurística do RMSE. Os resultados das melhores RNA’s simuladas mostraram um crescimento da demanda de biodiesel de 2019 a 2050 de 150,63% para o B15, e de 229,73% para o B20. Ambos cenários de aumento de demanda são justificados pela elevação gradual da porcentagem obrigatória do biodiesel ao diesel. Dessa forma, os resultados crescentes da demanda de biodiesel comprovam a busca do país por um combustível não-tóxico, biodegradável e renovável na sua matriz energética.

Referências

Acheampong, A. O., & Boateng, E. B. (2019). Modelling carbon emission intensity: Application of artificial neural network. Journal of Cleaner Production, 225, 833-856. doi: 10.1016/j.jclepro.2019.03.352

ANP – Agência Nacional de Petróleo, Gás Natural e Biocombustível. (2020). Biodiesel. Retrieved July 10, 2020, from http://www.anp.gov.br/biocombustiveis/biodiesel

Betiku, E., Osunleke, A. S., Odude, V. O., Bamimore, A., Oladipo, B., Okeleye, A. A., & Ishola, N. B. (2021). Performance evaluation of adaptive neuro-fuzzy inference system, artificial neural network and response surface methodology in modeling biodiesel synthesis from palm kernel oil by transesterification. Biofuels, 12(3), 339-354. doi: 10.1080/17597269.2018.1472980

Brahimi, T., Alhebshi, F., Alnabilsi, H., Bensenouci, A., & Rahman, M. (2019). Prediction of Wind Speed Distribution Using Artificial Neural Network: The Case of Saudi Arabia. Procedia Computer Science, 163, 41-48. doi: 10.1016/j.procs.2019.12.084.

Carmo, B. B. T., Pontes, H. L. J., Albertin, M. R., Neto, J. F. B., & da Silva Dutra, N. G. (2009). Avaliação da demanda por biodiesel em função de um modelo de previsão de demanda por diesel. Revista Produção Online, 9(3),511–535.

Chidambaranathan, B., Gopinath, S., Aravindraj, R., Devaraj, A., Krishnan, S. G., & Jeevaananthan, J. K. S. (2020). The production of biodiesel from castor oil as a potential feedstock and its usage in compression ignition Engine: A comprehensive review. Materials Today: Proceedings, 33, 84-92. doi: 10.1016/j.matpr.2020.03.205

CNPE – Conselho Nacional de Política Energética. (2018). Resolução CNPE n° 16, de 29 de outubro de 2018. Retrieved July 10, 2020, from https://www.gov.br/mme/pt-br/assuntos/conselhos-e-comites/cnpe/resolucoes-do-cnpe/arquivos/2018/resolucao_16_cnpe_29-10-18.pdf

Đozić, D. J., & Urošević, B. D. G. (2019). Application of artificial neural networks for testing long-term energy policy targets. Energy, 174, 488-496. doi: 10.1016/j.energy.2019.02.191

Ebrahimabadi, A., Azimipour, M., & Bahreini, A. (2015). Prediction of roadheaders' performance using artificial neural network approaches (MLP and KOSFM). Journal of Rock Mechanics and Geotechnical Engineering, 7(5), 573-583. doi: 10.1016/j.jrmge.2015.06.008

Ekonomou, L. (2010). Greek long-term energy consumption prediction using artificial neural networks. Energy, 35(2), 512-517. doi: 10.1016/j.energy.2009.10.018

Farobie, O., Hasanah, N., & Matsumura, Y. (2015). Artificial neural network modeling to predict biodiesel production in supercritical methanol and ethanol using spiral reactor. Procedia environmental sciences, 28, 214-223. doi: 10.1016/j.proenv.2015.07.028

Gupta, N., & Nigam, S. (2020). Crude Oil Price Prediction using Articial Neural Network. Procedia Computer Science. 170, 642-647. doi:10.1016/j.procs.2020.03.136.

Jayalakshmi, T., & Santhakumaran, A. (2011). Statistical normalization and back propagation for classification. International Journal of Computer Theory and Engineering, 3(1), 1793-8201. Retrieved from http://www.ijcte.org/papers/288-L052.pdf

Karunathilake, S. L., & Nagahamulla, H. R. (2017, September). Artificial neural networks for daily electricity demand prediction of Sri Lanka. In 2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer) (pp. 1-6). IEEE.

Katsatos, A. L., & Moustris, K. P. (2019). Application of Artificial Neuron Networks as energy consumption forecasting tool in the building of Regulatory Authority of Energy, Athens, Greece. Energy Procedia, 157, 851-861. doi: 10.1016/j.egypro.2018.11.251

Kochak, A., & Sharma, S. (2015). Demand forecasting using neural network for supply chain management. International journal of mechanical engineering and robotics research, 4(1), 96-104. doi: 10.18178/ijmerr.

Ling, Y., Yue, Q., Chai, C., Shan, Q., Hei, D., & Jia, W. (2020). Nuclear accident source term estimation using Kernel Principal Component Analysis, Particle Swarm Optimization, and Backpropagation Neural Networks. Annals of Nuclear Energy, 136, 107031. doi: 10.1016/j.anucene.2019.107031

Ministério de Minas e Energia, Empresa de Pesquisa Energética - MME/EPE. (2020). Plano Decenal de Expansão de Energia 2029. Retrieved July 03, 2020, from https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/plano-decenal-de-expansao-de-energia-2029

Ministério do Meio Ambiente. (2020). Acordo de Paris. Retrieved July 10, 2020, from https://www.mma.gov.br/clima/convencao-das-nacoes-unidas/acordo-de-paris

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria: UFSM, NTE.

Queiroz, A. A., & Cavalheiro, D. (2003). Método de previsão de demanda e detecção de sazonalidade para o planejamento da produção de indústrias de alimentos. Anais do Encontro Nacional de Engenharia de Produção, 23.

Rajakarunakaran, S., Venkumar, P., Devaraj, D., & Rao, K. S. P. (2008). Artificial neural network approach for fault detection in rotary system. Applied Soft Computing, 8(1), 740-748. doi: 10.1016/j.asoc.2007.06.002

Selvan, S. S., Pandian, P. S., Subathira, A., & Saravanan, S. (2018). Artificial neural network modeling-coupled genetic algorithm optimization of supercritical methanol transesterification of Aegle marmelos oil to biodiesel. Biofuels, 1-9. doi: 10.1080/17597269.2018.1542567

Singh, D., Sharma, D., Soni, S. L., Sharma, S., Sharma, P. K., & Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262, 116553. doi:10.1016/j.fuel.2019.116553.

Sivamani, S., Selvakumar, S., Rajendran, K., & Muthusamy, S. (2019). Artificial neural network–genetic algorithm-based optimization of biodiesel production from Simarouba glauca. Biofuels, 10(3), 393-401. doi: 10.1080/17597269.2018.1432267

Thakur, A. K., Mer, K. K. S., & Kaviti, A. (2018). An artificial neural network approach to predict the performance and exhaust emissions of a gasoline engine using ethanol–gasoline blended fuels. Biofuels, 9(3), 379-393.doi: 10.1080/17597269.2016.1271630

Tubino, D. F. (2007). Planejamento e controle da produção: teoria e prática. São Paulo: Atlas.

Turp, S. M., Eren, B., & Ates, A. (2011). Prediction of adsorption efficiency for the removal of nickel (II) ions by zeolite using artificial neural network (ANN) approach. Fresenius Environmental Bulletin, 20(12), 3158-3165. Retrieved from https://d1wqtxts1xzle7.cloudfront.net/30548310/02-FEB-Prediction_of_adsorption_efficiency_for_the_removal_of.pdf?1360286886=&response-content-disposition=inline%3B+filename%3DPREDICTION_OF_ADSORPTION_EFFICIENCY_FOR.pdf&Expires=1618498882&Signature=LbccMwk3lLWMu4GcTriv6aoz~E1~LYk9uddxkeqQJBigkGd3YhuK46-n1WMxg1HQn0TBIv7VdCqwLr9ecbNEmHfYAfjmhYbSV2M5mwaOB1zP43UcFcDpGBYM2NeEEhgyvA~QFKfmmW2vOyut5xFIs~dibp~Eeq5u7kP1HqIcYOL5FpRg0~Sz5LB5aOO~WG-ejZTEQnbXN8pL0UsamqEvIKsz3QrQtKz49H1ykRmFGrMRRkY3U9h5EAnm~V3l1fdIfmc1TtKxKj5BakgLAeo2Qd013Ip65wDmHK6o6C4~VcX0UYd5pwk4MOSb4L0lSuu0sOV-BAJ0WrVvPKRqnvSumg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

União Brasileira do biodiesel e bioquerosene – Ubrabio. (2016). Energia para combater as mudanças climáticas. Biodiesel em foco; 9–17. Retrieved July 5, 2020, from https://issuu.com/ubrabio/docs/biodiesel_em_foco_-_ed_07-2016-web/17

Vastrad, C. (2013). Performance analysis of neural network models for oxazolines and oxazoles derivatives descriptor dataset. International Journal of Information Sciences and Techniques (IJIST), 3(6). doi: 10.5121/ijist.2013.3601

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International journal of forecasting, 14(1), 35-62.

Downloads

Publicado

02/05/2021

Como Citar

CAIRES, K. V. L. .; SIMONELLI, G. . Previsão da demanda brasileira de biodiesel utilizando redes neurais artificiais . Research, Society and Development, [S. l.], v. 10, n. 5, p. e17410513381, 2021. DOI: 10.33448/rsd-v10i5.13381. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13381. Acesso em: 23 nov. 2024.

Edição

Seção

Engenharias