Uso de alta presión con dióxido de carbono supercrítico para inactivar Escherichia coli en puré de calabaza
DOI:
https://doi.org/10.33448/rsd-v10i4.13853Palabras clave:
E. coli; Puré de calabaza; Tecnología supercrítica; Características físico-químicas; Microscopía óptica.Resumen
La inactivación de E. coli ATCC 25922 se estudió para determinar el efecto del proceso de alta presión con dióxido de carbono (HPCD) sobre el puré de calabaza. Los experimentos se llevaron a cabo utilizando un sistema discontinuo de HPCD en tres condiciones de presión (7,5 MPa, 17,5 MPa y 27,5 MPa) a 32 ° C. Luego, en la mejor condición experimentale (27.5 Mpa - 275 bar), se realizó una cinética para evaluar la inactivación de microorganismos a lo largo del tiempo (de 1 a 8 h). También se evaluaron las características fisicoquímicas (pH, sólidos solubles totales - TSS, acidez titulable - TA, carotenoides totales, azúcares reductores totales - TRS, humedad y microscopía óptica). El HPCD con acidificación aumentó la eficacia bacteriana de los tratamientos, así como cambios significativos en los parámetros físico-químicos. El tratamiento con HPCD redujo la carga microbiana de forma moderada en todos los experimentos hasta un máximo de 3,17 ciclos logarítmicos en 8 h de procesos a 27,5 MPa (275 bar). La microscopía óptica mostró que no había diferencia en la pared celular, solo en las estructuras del almidón, lo que se esperaba por la acción de cocción.
Citas
Alvarez, M. D., Fuentes, R., & Canet, W. (2015). Effects of pressure, temperature, treatment time, and storage on rheological, textural, and structural properties of heat-induced chickpea gels. Foods, 4, 80-114. https://doi.org/10.3390/foods4020080
Bai, A. J., & Rai, V. R. (2011). Bacterial Quorum Sensing and Food Industry. Comprehensive Reviews in Food Science and Food Safety, 10, 183–193. https://doi.org/10.1111/j.1541-4337.2011.00150.x
Barba, F. J., Terefe, N. S., Buckow, R., Knorr, D., & Orlien, V. (2015). New opportunities and perspectives of high-pressure treatment to improve health and safety attributes of foods. A review. Food Research International, 77, 725–742. https://doi.org/10.1016/j.foodres.2015.05.015
Costa AF. (1982). Farmacognosia: Farmacognosia Experimental. (2ª ed.). Fundação Calouste Gulbenkian.
Erkmen, O. (2001a). Mathematical modelling of Escherichia coli inactivation under high pressure carbon dioxide. Journal of Bioscience and Bioengineering, 92, 39-43. https://doi.org/10.1016/S1389-1723(01)80196-1
Erkmen, O. (2001b). Effects of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk. International Journal of Food Microbiology, 65, 131–135. https://doi.org/10.1016/S0168-1605(00)00499-2
Ferrentino, G., & Spilimbergo, S. (2011). High pressure carbon dioxide pressurization of solid foods: Current knowledge and future outlooks. Trends in Food Science and Technology, 22, 427–441. https://doi.org/10.1016/j.tifs.2011.04.009
Furukawa, S., Watanabe, T., Koyama, T., Hirata, J., Narisawa, N., & Ogihara, H. (2009). Inactivation of food poisoning bacteria and Geobacillus stearothermophilus spores by high pressure carbon dioxide treatment. Food Control, 20, 53–55. https://doi.org/10.1016/j.foodcont.2008.02.002
Garcia-Gonzalez, L., Geeraerd, A. H., Elst, K., Van Ginneken, L., Van Impe, J. F., & Devlieghere, F. (2009). Influence of type of microorganism, food ingredients and food properties on high-pressure carbon dioxide inactivation of microorganisms. International Journal of Food Microbiology, 129, 253-263. https://doi.org/10.1016/j.ijfoodmicro.2008.12.005
Garcia-Gonzalez, L., Geeraerd, A. H., Mast, J., Briers, Y., Elst, K., Van Ginneken, L., Van Impe, J. F., & Devlieghere, F. (2010). Membrane permeabilization and cellular death of Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment. Food Microbiology, 27, 541-549. https://doi.org/10.1016/j.fm.2009.12.004
Garcia-Gonzalez, L., Geeraerd, A. H., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J., Van Impe, J. F., & Devlieghere, F. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. International Journal of Food Microbiology, 117, 1-28. https://doi.org/10.1016/j.ijfoodmicro.2007.02.018
Jay, J. M. (2005). Food Microbiology. (6a ed.). Artmed.
Kebede, B. T., Grauwet, T., Mutsokoti, L., Palmers, S., Vervoort, L., Hendrickx, M., & Loey, A. V. (2014). Comparing the impact of high-pressure high temperature and thermal sterilization on the volatile fingerprint of onion, potato, pumpkin and red beet. Food Research International, 56, 218–225. https://doi.org/10.1016/j.foodres.2013.12.034
Kimura, M., Kobori, C. N., Rodriguez-Amaya, D. B., & Nestel, P. (2007). Screening and HPLC methods for carotenoids in sweetpotato, cassava and maize for plant breeding trials. Food Chemistry, 100, 1734-1746. https://doi.org/10.1016/j.foodchem.2005.10.020
Kimura, M., & Rodriguez-Amaya, D. B. (2002). A scheme for obtaining standards and HPLC quantification of leafy vegetable carotenoids. Food Chemistry, 78, 389-398.
Maácz, G. L., & Vágás, E. (1961). A new method for staining of cellulose and lignified cells-walls. Mikroskopie, 16, 40–43.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analitical Chemistry, 31, 426–428.
Plaza, L., Sanchez-Moreno, C., De Ancos, B., & Cano, M. P. (2006). Carotenoid content and antioxidant capacity of Mediterranean vegetable soup (gazpacho) treated by high-pressure/temperature during refrigerated storage. European Food Research and Technology, 223, 210–215. https://doi.org/10.1007/s00217-005-0174-z
Ortuño, C., Martínez-Pastor, M. T., Mulet, A., & Benedito, J. (2012). Supercritical carbon dioxide inactivation of Escherichia coli and Saccharomyces cerevisiae in different growth stages. Journal of Supercritical Fluids, 63, 8–15. https://doi.org/10.1016/j.supflu.2011.12.022
Paciulli, M., Ganino, T., Pellegrini, N., Rinaldi, M., Zaupa, M., Fabbri, A., & Chiavaro, E. (2015). Impact of the industrial freezing process on selected vegetables – Part I. Structure, texture and antioxidant capacity. Food Research International, 74, 329-337. https://doi.org/10.1016/j.foodres.2014.04.019
Paciulli, M., Rinaldi, M., Rodolfi, M., Ganino, T., Morbarigazzi, M., & Chiavaro, E. (2019). Effects of high hydrostatic pressure on physico-chemical and structural properties of two pumpkin species. Food Chemistry, 274, 281-290. https://doi.org/10.1016/j.foodchem.2018.09.021
Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1985). The properties of gases and liquids. Fourth (ed). McGraw-Hill Book Company.
Sanchez-Moreno, C., Plaza, L., Elez-Martinez, P., De Ancos, B., Martin-Belloso, O., & Cano, M. P. (2005). Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry, 53, 4403–4409. https://doi.org/10.1021/jf048839b
Sátiro, L. de S., Costa, F. B. da, Nascimento, A. M. do, Silva, J. L. da, Nobre, M. A. F., Araujo, C. R. de, Gadelha, T. M., & Lira, R. P. de (2020). Avaliação da qualidade físico-química da abóbora brasileirinha (Cucurbita moschata) minimamente processada. Research, Society and Development, 9(5), e58953202. https://doi.org/10.33448/rsd-v9i5.3202
Sila, D. N., Doungla, E., Smout, C., Van Loey, A., & Hendrickx, M. (2006). Pectin fraction interconversions: Insight into understanding texture evolution of thermally processed carrots. Journal of Agriculture and Food Chemistry, 54, 8471-8479. https://doi.org/10.1021/jf0613379
Silva, J.M., Rigo, A. A., Dalmolin, I. A., Debien, I., Cansian, R. L., Oliveira, J. V., & Mazutti MA. (2013). Effect of pressure, depressurization rate and pressure cycling on the inactivation of Escherichia coli by supercritical carbon dioxide. Food Control, 29, 76–81. https://doi.org/10.1016/j.foodcont.2012.05.068
Soares, D., Lerin, L. A., Cansian, R. L., Oliveira, J. V., & Mazutti, M. A. (2013). Inactivation of Listeria monocytogenes using supercritical carbon dioxide in a high-pressure variable-volume reactor. Food Control, 31, 514–518. https://doi.org/10.1016/j.foodcont.2012.11.045
Spilimbergo, S., Dehghani, F., Bertucco, A., & Foster N. (2003). Inactivation of bacteria spores by pulse electric field and high-pressure CO2 at low temperature. Biotechnology and Bioengineering, 82, 118-125. https://doi.org/10.1002/bit.10554
Yuk, H., Geveke, D. J., & Zhang, H. Q. (2010). Efficacy of supercritical carbon dioxide for non-thermal inactivation of Escherichia coli K12 in apple cider. International Journal of Food Microbiology, 138, 91–99. https://doi.org/10.1016/j.ijfoodmicro.2009.11.017
Zhou, C., Liu, W., Zhao, J., Yuan, C., Song, Y., Chen, D., Ni, Y., & Li, Q. (2014). The effect of high hydrostatic pressure on the microbiological quality and physical-chemical characteristics of Pumpkin (Cucurbita maxima Duch.) during refrigerated storage. Innovative Food Science & Emerging Technologies, 21, 24–34. https://doi.org/10.1016/j.ifset.2013.11.002
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Luís Carlos Oliveira dos Santos Júnior; Iuri Heberle; Ana Carolina Moura de Sena Aquino; José Vladimir Oliveira; Deise Helena Baggio Ribeiro; João de Deus Medeiros; Edna Regina Amante
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.