High-pressure supercritical carbon dioxide uses to inactivate Escherichia coli in pumpkin puree

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.13853

Keywords:

Supercritical technology; Physicochemical characteristics; E. coli; Pumpkin puree; Optical microscopy.

Abstract

  1. Coli ATCC 25922 inactivation was studied to determine the effect of high-pressure carbon dioxide (HPCD) process on pumpkin puree. Experiments were performed using a batch HPCD system at three conditions of pressure (7.5 MPa, 17.5 MPa and 27.5 MPa) at 32 °C. Afterwards, at the best experimental condition (27.5 MPa – 275 bar), a kinetic was performed to assess inactivation of microorganisms over time (from 1 to 8 h). The physicochemical characteristics (pH, total soluble solids – TSS, titratable acidity – TA, total carotenoids, total reducing sugars – TRS, moisture and optical microscopy) of the pumpkin puree were also evaluated. HPCD with acidification increases bacterial efficacy of treatments, as well as significant changes in physicochemical parameters. HPCD treatment reduced the microbial load moderately in all experiments, by a maximum of approximately 3.17 log cycles in 8 h of process at 27.5 MPa (275 bar). Optical microscopy showed no difference in cell wall, just in starch which was expected by cooking.

References

Alvarez, M. D., Fuentes, R., & Canet, W. (2015). Effects of pressure, temperature, treatment time, and storage on rheological, textural, and structural properties of heat-induced chickpea gels. Foods, 4, 80-114. https://doi.org/10.3390/foods4020080

Bai, A. J., & Rai, V. R. (2011). Bacterial Quorum Sensing and Food Industry. Comprehensive Reviews in Food Science and Food Safety, 10, 183–193. https://doi.org/10.1111/j.1541-4337.2011.00150.x

Barba, F. J., Terefe, N. S., Buckow, R., Knorr, D., & Orlien, V. (2015). New opportunities and perspectives of high-pressure treatment to improve health and safety attributes of foods. A review. Food Research International, 77, 725–742. https://doi.org/10.1016/j.foodres.2015.05.015

Costa AF. (1982). Farmacognosia: Farmacognosia Experimental. (2ª ed.). Fundação Calouste Gulbenkian.

Erkmen, O. (2001a). Mathematical modelling of Escherichia coli inactivation under high pressure carbon dioxide. Journal of Bioscience and Bioengineering, 92, 39-43. https://doi.org/10.1016/S1389-1723(01)80196-1

Erkmen, O. (2001b). Effects of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk. International Journal of Food Microbiology, 65, 131–135. https://doi.org/10.1016/S0168-1605(00)00499-2

Ferrentino, G., & Spilimbergo, S. (2011). High pressure carbon dioxide pressurization of solid foods: Current knowledge and future outlooks. Trends in Food Science and Technology, 22, 427–441. https://doi.org/10.1016/j.tifs.2011.04.009

Furukawa, S., Watanabe, T., Koyama, T., Hirata, J., Narisawa, N., & Ogihara, H. (2009). Inactivation of food poisoning bacteria and Geobacillus stearothermophilus spores by high pressure carbon dioxide treatment. Food Control, 20, 53–55. https://doi.org/10.1016/j.foodcont.2008.02.002

Garcia-Gonzalez, L., Geeraerd, A. H., Elst, K., Van Ginneken, L., Van Impe, J. F., & Devlieghere, F. (2009). Influence of type of microorganism, food ingredients and food properties on high-pressure carbon dioxide inactivation of microorganisms. International Journal of Food Microbiology, 129, 253-263. https://doi.org/10.1016/j.ijfoodmicro.2008.12.005

Garcia-Gonzalez, L., Geeraerd, A. H., Mast, J., Briers, Y., Elst, K., Van Ginneken, L., Van Impe, J. F., & Devlieghere, F. (2010). Membrane permeabilization and cellular death of Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment. Food Microbiology, 27, 541-549. https://doi.org/10.1016/j.fm.2009.12.004

Garcia-Gonzalez, L., Geeraerd, A. H., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J., Van Impe, J. F., & Devlieghere, F. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. International Journal of Food Microbiology, 117, 1-28. https://doi.org/10.1016/j.ijfoodmicro.2007.02.018

Jay, J. M. (2005). Food Microbiology. (6a ed.). Artmed.

Kebede, B. T., Grauwet, T., Mutsokoti, L., Palmers, S., Vervoort, L., Hendrickx, M., & Loey, A. V. (2014). Comparing the impact of high-pressure high temperature and thermal sterilization on the volatile fingerprint of onion, potato, pumpkin and red beet. Food Research International, 56, 218–225. https://doi.org/10.1016/j.foodres.2013.12.034

Kimura, M., Kobori, C. N., Rodriguez-Amaya, D. B., & Nestel, P. (2007). Screening and HPLC methods for carotenoids in sweetpotato, cassava and maize for plant breeding trials. Food Chemistry, 100, 1734-1746. https://doi.org/10.1016/j.foodchem.2005.10.020

Kimura, M., & Rodriguez-Amaya, D. B. (2002). A scheme for obtaining standards and HPLC quantification of leafy vegetable carotenoids. Food Chemistry, 78, 389-398.

Maácz, G. L., & Vágás, E. (1961). A new method for staining of cellulose and lignified cells-walls. Mikroskopie, 16, 40–43.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analitical Chemistry, 31, 426–428.

Plaza, L., Sanchez-Moreno, C., De Ancos, B., & Cano, M. P. (2006). Carotenoid content and antioxidant capacity of Mediterranean vegetable soup (gazpacho) treated by high-pressure/temperature during refrigerated storage. European Food Research and Technology, 223, 210–215. https://doi.org/10.1007/s00217-005-0174-z

Ortuño, C., Martínez-Pastor, M. T., Mulet, A., & Benedito, J. (2012). Supercritical carbon dioxide inactivation of Escherichia coli and Saccharomyces cerevisiae in different growth stages. Journal of Supercritical Fluids, 63, 8–15. https://doi.org/10.1016/j.supflu.2011.12.022

Paciulli, M., Ganino, T., Pellegrini, N., Rinaldi, M., Zaupa, M., Fabbri, A., & Chiavaro, E. (2015). Impact of the industrial freezing process on selected vegetables – Part I. Structure, texture and antioxidant capacity. Food Research International, 74, 329-337. https://doi.org/10.1016/j.foodres.2014.04.019

Paciulli, M., Rinaldi, M., Rodolfi, M., Ganino, T., Morbarigazzi, M., & Chiavaro, E. (2019). Effects of high hydrostatic pressure on physico-chemical and structural properties of two pumpkin species. Food Chemistry, 274, 281-290. https://doi.org/10.1016/j.foodchem.2018.09.021

Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1985). The properties of gases and liquids. Fourth (ed). McGraw-Hill Book Company.

Sanchez-Moreno, C., Plaza, L., Elez-Martinez, P., De Ancos, B., Martin-Belloso, O., & Cano, M. P. (2005). Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry, 53, 4403–4409. https://doi.org/10.1021/jf048839b

Sátiro, L. de S., Costa, F. B. da, Nascimento, A. M. do, Silva, J. L. da, Nobre, M. A. F., Araujo, C. R. de, Gadelha, T. M., & Lira, R. P. de (2020). Avaliação da qualidade físico-química da abóbora brasileirinha (Cucurbita moschata) minimamente processada. Research, Society and Development, 9(5), e58953202. https://doi.org/10.33448/rsd-v9i5.3202

Sila, D. N., Doungla, E., Smout, C., Van Loey, A., & Hendrickx, M. (2006). Pectin fraction interconversions: Insight into understanding texture evolution of thermally processed carrots. Journal of Agriculture and Food Chemistry, 54, 8471-8479. https://doi.org/10.1021/jf0613379

Silva, J.M., Rigo, A. A., Dalmolin, I. A., Debien, I., Cansian, R. L., Oliveira, J. V., & Mazutti MA. (2013). Effect of pressure, depressurization rate and pressure cycling on the inactivation of Escherichia coli by supercritical carbon dioxide. Food Control, 29, 76–81. https://doi.org/10.1016/j.foodcont.2012.05.068

Soares, D., Lerin, L. A., Cansian, R. L., Oliveira, J. V., & Mazutti, M. A. (2013). Inactivation of Listeria monocytogenes using supercritical carbon dioxide in a high-pressure variable-volume reactor. Food Control, 31, 514–518. https://doi.org/10.1016/j.foodcont.2012.11.045

Spilimbergo, S., Dehghani, F., Bertucco, A., & Foster N. (2003). Inactivation of bacteria spores by pulse electric field and high-pressure CO2 at low temperature. Biotechnology and Bioengineering, 82, 118-125. https://doi.org/10.1002/bit.10554

Yuk, H., Geveke, D. J., & Zhang, H. Q. (2010). Efficacy of supercritical carbon dioxide for non-thermal inactivation of Escherichia coli K12 in apple cider. International Journal of Food Microbiology, 138, 91–99. https://doi.org/10.1016/j.ijfoodmicro.2009.11.017

Zhou, C., Liu, W., Zhao, J., Yuan, C., Song, Y., Chen, D., Ni, Y., & Li, Q. (2014). The effect of high hydrostatic pressure on the microbiological quality and physical-chemical characteristics of Pumpkin (Cucurbita maxima Duch.) during refrigerated storage. Innovative Food Science & Emerging Technologies, 21, 24–34. https://doi.org/10.1016/j.ifset.2013.11.002

Downloads

Published

31/03/2021

How to Cite

SANTOS JÚNIOR, L. C. O. dos .; HEBERLE, I.; AQUINO, A. C. M. de S. .; OLIVEIRA, J. V. .; RIBEIRO, D. H. B. .; MEDEIROS, J. de D. .; AMANTE, E. R. High-pressure supercritical carbon dioxide uses to inactivate Escherichia coli in pumpkin puree . Research, Society and Development, [S. l.], v. 10, n. 4, p. e6510413853, 2021. DOI: 10.33448/rsd-v10i4.13853. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13853. Acesso em: 18 apr. 2024.

Issue

Section

Agrarian and Biological Sciences