Uso de alta pressão com dióxido de carbono supercrítico para inativar Escherichia coli em purê de abóbora

Autores

DOI:

https://doi.org/10.33448/rsd-v10i4.13853

Palavras-chave:

E. coli; Purê de abóbora; Tecnologia supercrítica; Características físico-químicas; Microscopia óptica.

Resumo

A inativação da E. coli ATCC 25922 foi estudada para determinar o efeito do processo de alta pressão com dióxido de carbono (HPCD) em purê de abóbora. Os experimentos foram realizados utilizando um sistema em batelada de HPCD em três condições de pressão (7,5 Mpa, 17,5 Mpa e 27,5 Mpa) a 32 °C. Depois, na melhor condição experimental (27,5 Mpa – 275 bar), uma cinética foi realizada para avaliar a inativação de micro-organismos ao longo do tempo (de 1 a 8 h). As características físico-químicas (pH, sólidos solúveis totais – TSS, acidez titulável – TA, carotenoides totais, açúcares redutores totais – TRS, umidade e microscopia óptica) do purê de abóbora foram também avaliadas. HPCD com acidificação aumentou a eficácia bacteriana dos tratamentos, bem como mudanças significativas nos parâmetros físico-químicos. O tratamento com HPCD reduziu a carga microbiana de forma moderada em todos os experimentos para um máximo de até 3,17 ciclos log em 8 h de processos a 27,5 Mpa (275 bar). A microscopia óptica mostrou que não houve diferença na parede celular, apenas nas estruturas do amido, o que era esperado pela ação do cozimento.

Referências

Alvarez, M. D., Fuentes, R., & Canet, W. (2015). Effects of pressure, temperature, treatment time, and storage on rheological, textural, and structural properties of heat-induced chickpea gels. Foods, 4, 80-114. https://doi.org/10.3390/foods4020080

Bai, A. J., & Rai, V. R. (2011). Bacterial Quorum Sensing and Food Industry. Comprehensive Reviews in Food Science and Food Safety, 10, 183–193. https://doi.org/10.1111/j.1541-4337.2011.00150.x

Barba, F. J., Terefe, N. S., Buckow, R., Knorr, D., & Orlien, V. (2015). New opportunities and perspectives of high-pressure treatment to improve health and safety attributes of foods. A review. Food Research International, 77, 725–742. https://doi.org/10.1016/j.foodres.2015.05.015

Costa AF. (1982). Farmacognosia: Farmacognosia Experimental. (2ª ed.). Fundação Calouste Gulbenkian.

Erkmen, O. (2001a). Mathematical modelling of Escherichia coli inactivation under high pressure carbon dioxide. Journal of Bioscience and Bioengineering, 92, 39-43. https://doi.org/10.1016/S1389-1723(01)80196-1

Erkmen, O. (2001b). Effects of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk. International Journal of Food Microbiology, 65, 131–135. https://doi.org/10.1016/S0168-1605(00)00499-2

Ferrentino, G., & Spilimbergo, S. (2011). High pressure carbon dioxide pressurization of solid foods: Current knowledge and future outlooks. Trends in Food Science and Technology, 22, 427–441. https://doi.org/10.1016/j.tifs.2011.04.009

Furukawa, S., Watanabe, T., Koyama, T., Hirata, J., Narisawa, N., & Ogihara, H. (2009). Inactivation of food poisoning bacteria and Geobacillus stearothermophilus spores by high pressure carbon dioxide treatment. Food Control, 20, 53–55. https://doi.org/10.1016/j.foodcont.2008.02.002

Garcia-Gonzalez, L., Geeraerd, A. H., Elst, K., Van Ginneken, L., Van Impe, J. F., & Devlieghere, F. (2009). Influence of type of microorganism, food ingredients and food properties on high-pressure carbon dioxide inactivation of microorganisms. International Journal of Food Microbiology, 129, 253-263. https://doi.org/10.1016/j.ijfoodmicro.2008.12.005

Garcia-Gonzalez, L., Geeraerd, A. H., Mast, J., Briers, Y., Elst, K., Van Ginneken, L., Van Impe, J. F., & Devlieghere, F. (2010). Membrane permeabilization and cellular death of Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment. Food Microbiology, 27, 541-549. https://doi.org/10.1016/j.fm.2009.12.004

Garcia-Gonzalez, L., Geeraerd, A. H., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J., Van Impe, J. F., & Devlieghere, F. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. International Journal of Food Microbiology, 117, 1-28. https://doi.org/10.1016/j.ijfoodmicro.2007.02.018

Jay, J. M. (2005). Food Microbiology. (6a ed.). Artmed.

Kebede, B. T., Grauwet, T., Mutsokoti, L., Palmers, S., Vervoort, L., Hendrickx, M., & Loey, A. V. (2014). Comparing the impact of high-pressure high temperature and thermal sterilization on the volatile fingerprint of onion, potato, pumpkin and red beet. Food Research International, 56, 218–225. https://doi.org/10.1016/j.foodres.2013.12.034

Kimura, M., Kobori, C. N., Rodriguez-Amaya, D. B., & Nestel, P. (2007). Screening and HPLC methods for carotenoids in sweetpotato, cassava and maize for plant breeding trials. Food Chemistry, 100, 1734-1746. https://doi.org/10.1016/j.foodchem.2005.10.020

Kimura, M., & Rodriguez-Amaya, D. B. (2002). A scheme for obtaining standards and HPLC quantification of leafy vegetable carotenoids. Food Chemistry, 78, 389-398.

Maácz, G. L., & Vágás, E. (1961). A new method for staining of cellulose and lignified cells-walls. Mikroskopie, 16, 40–43.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analitical Chemistry, 31, 426–428.

Plaza, L., Sanchez-Moreno, C., De Ancos, B., & Cano, M. P. (2006). Carotenoid content and antioxidant capacity of Mediterranean vegetable soup (gazpacho) treated by high-pressure/temperature during refrigerated storage. European Food Research and Technology, 223, 210–215. https://doi.org/10.1007/s00217-005-0174-z

Ortuño, C., Martínez-Pastor, M. T., Mulet, A., & Benedito, J. (2012). Supercritical carbon dioxide inactivation of Escherichia coli and Saccharomyces cerevisiae in different growth stages. Journal of Supercritical Fluids, 63, 8–15. https://doi.org/10.1016/j.supflu.2011.12.022

Paciulli, M., Ganino, T., Pellegrini, N., Rinaldi, M., Zaupa, M., Fabbri, A., & Chiavaro, E. (2015). Impact of the industrial freezing process on selected vegetables – Part I. Structure, texture and antioxidant capacity. Food Research International, 74, 329-337. https://doi.org/10.1016/j.foodres.2014.04.019

Paciulli, M., Rinaldi, M., Rodolfi, M., Ganino, T., Morbarigazzi, M., & Chiavaro, E. (2019). Effects of high hydrostatic pressure on physico-chemical and structural properties of two pumpkin species. Food Chemistry, 274, 281-290. https://doi.org/10.1016/j.foodchem.2018.09.021

Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1985). The properties of gases and liquids. Fourth (ed). McGraw-Hill Book Company.

Sanchez-Moreno, C., Plaza, L., Elez-Martinez, P., De Ancos, B., Martin-Belloso, O., & Cano, M. P. (2005). Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry, 53, 4403–4409. https://doi.org/10.1021/jf048839b

Sátiro, L. de S., Costa, F. B. da, Nascimento, A. M. do, Silva, J. L. da, Nobre, M. A. F., Araujo, C. R. de, Gadelha, T. M., & Lira, R. P. de (2020). Avaliação da qualidade físico-química da abóbora brasileirinha (Cucurbita moschata) minimamente processada. Research, Society and Development, 9(5), e58953202. https://doi.org/10.33448/rsd-v9i5.3202

Sila, D. N., Doungla, E., Smout, C., Van Loey, A., & Hendrickx, M. (2006). Pectin fraction interconversions: Insight into understanding texture evolution of thermally processed carrots. Journal of Agriculture and Food Chemistry, 54, 8471-8479. https://doi.org/10.1021/jf0613379

Silva, J.M., Rigo, A. A., Dalmolin, I. A., Debien, I., Cansian, R. L., Oliveira, J. V., & Mazutti MA. (2013). Effect of pressure, depressurization rate and pressure cycling on the inactivation of Escherichia coli by supercritical carbon dioxide. Food Control, 29, 76–81. https://doi.org/10.1016/j.foodcont.2012.05.068

Soares, D., Lerin, L. A., Cansian, R. L., Oliveira, J. V., & Mazutti, M. A. (2013). Inactivation of Listeria monocytogenes using supercritical carbon dioxide in a high-pressure variable-volume reactor. Food Control, 31, 514–518. https://doi.org/10.1016/j.foodcont.2012.11.045

Spilimbergo, S., Dehghani, F., Bertucco, A., & Foster N. (2003). Inactivation of bacteria spores by pulse electric field and high-pressure CO2 at low temperature. Biotechnology and Bioengineering, 82, 118-125. https://doi.org/10.1002/bit.10554

Yuk, H., Geveke, D. J., & Zhang, H. Q. (2010). Efficacy of supercritical carbon dioxide for non-thermal inactivation of Escherichia coli K12 in apple cider. International Journal of Food Microbiology, 138, 91–99. https://doi.org/10.1016/j.ijfoodmicro.2009.11.017

Zhou, C., Liu, W., Zhao, J., Yuan, C., Song, Y., Chen, D., Ni, Y., & Li, Q. (2014). The effect of high hydrostatic pressure on the microbiological quality and physical-chemical characteristics of Pumpkin (Cucurbita maxima Duch.) during refrigerated storage. Innovative Food Science & Emerging Technologies, 21, 24–34. https://doi.org/10.1016/j.ifset.2013.11.002

Downloads

Publicado

31/03/2021

Como Citar

SANTOS JÚNIOR, L. C. O. dos .; HEBERLE, I.; AQUINO, A. C. M. de S. .; OLIVEIRA, J. V. .; RIBEIRO, D. H. B. .; MEDEIROS, J. de D. .; AMANTE, E. R. Uso de alta pressão com dióxido de carbono supercrítico para inativar Escherichia coli em purê de abóbora. Research, Society and Development, [S. l.], v. 10, n. 4, p. e6510413853, 2021. DOI: 10.33448/rsd-v10i4.13853. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13853. Acesso em: 25 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas