Distribución del estrés en implantes con conexión interna con coronas e intermedios de diferentes materiales

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i4.13933

Palabras clave:

Polieter-eter-cetona; Zirconia; Intermedio; Distribución de Tensiones; Método de elementos finitos.

Resumen

El objetivo de este estudio fue comparar, utilizando el método de elementos finitos (MEF), la distribución de tensiones en dos tipos diferentes de coronas (zirconia y cerámica de feldespato) y tres tipos diferentes de intermedios protésicos (PEEK, titanio y zirconia) en un incisivo central. Se establecieron cinco grupos: P-Zr/SA (PEEK/zirconia - sin adherencia), P-Zr/CA (PEEK/zirconia - con adherencia), Ti-Zr (titanio/zirconia), Zr-Zr (zirconia/ irconia) y Zr-F (zirconia/feldespato). En cada modelo, se simuló una carga oblicua de 100 N en la superficie palatina. Todos los modelos se exportaron a un software de análisis de elementos finitos (ANSYS Workbench 16), donde se analizaron los valores Máximo Principal (tracción), Mínimo Principal (compresión) y von Mises. Los resultados mostraron que los grupos P-Zr/SA y P-Zr/CA tenían los valores de von Mises más altos en el implante, y estas tensiones se concentraron en la plataforma del implante. En los intermedios, en todos los grupos, la tensión principal máxima se concentró en la región de la conexión hexagonal, teniendo los grupos P-Zr/SA y P-Zr/CA los valores más bajos. Los grupos P-Zr/CA y Zr-Zr mostraron mayor disipación de tensiones en la corona. En los tornillos, las tensiones de von Mises fue similar en todos los grupos, con los grupos P-Zr/SA y P-Zr/CA mostrando los valores más altos. En este estudio se concluyó que el PEEK intermedio no proporciona una mejor distribución de la tensión en las coronas, implantes y tornillos.

Citas

Abrahamsson, I, Berglund, T, Glantz, P. O. & Lindhe J. (1998). The mucosal attachment at different abutments. An experimental study in dogs. Journal of Clinical Periodontology. 25, 721–727.

Bidra, A. S.& Rungruanganunt, P. (2013). Clinical outcomes of implant abutments in the anterior region: a systematic review. J Esthet Restor Dent. 25(3):159-76.

Dos Santos, M. B. F., Meloto, G. O., Bacchi, A, & Correr-Sobrinho, L. (2017). Stress distribution in cylindrical and conical implants under rotational micromovement with different boundary conditions and bone properties: 3-D FEA. Comput Methods Biomech Biomed Engin. 20(8):893-900.

Ekfeldt, A, Fürst, B, & Carlsson, G. E. (2011). Zirconia abutments for single-tooth implant restorations: a retrospective and clinical follow-up study. Clin Oral Implants Res. 22(11):1308-14.

Geng, J. P., Tan, K. B.& Liu, G. R. (2001). Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 85(6):585-598.

Gomes, A. L. & Montero, J. (2011). Zirconia implant abutments: a review. Med Oral Patol Oral Cir Bucal. 16(1):e50-5.

Heffernan, M. J., Aquilino, S. A., Diaz-Arnold, A. M., Haselton, D. R., Stanford, C. M. & Vargas, M. Al.(2002). Relative translucency of six all ceramic systems. Part I: core materials. J Prosthet Dent.88:4e9.

Jemt, T. (1986). Modified single and short-span restoration supported by osseointegrated fixtures in the partially edentulous jaw. J Prosthet Dent. 55: 243–247.

Jung, R. E., Zembic, A, Pjetursson, B. E., Zwahlen, M. & Thoma, D. S. (2012). Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. Clin Oral Implants Res. 23(Suppl 6):2–21.

Kaleli, N, Sarac, D, Külünk, S. & Öztürk, Ö. (2018) Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: A three-dimensional finite element analysis study. J Prosthet Dent. 119(3):437-445.

Lindhe, J. & Berglundh, T. (1998). The interface between the mucosa and the implant. Periodontol 2000.17:47-54.

Linkevicius, T. & Apse, P. (2008). Influence of abutment material on stability of peri implant tissues: A systematic review. Int J Oral Maxillofac Implants. 26(3), 449–456.

Linkevicius,T.&Vaitelis, J. (2015). The effect of zirconia or titanium as abutment material on soft peri-implant tissues: a systematic review and meta-analysis. Clin Oral Implants Res. 26(Suppl11):139-47.

Lops, D, Bressan, E, Chiapasco, M, Rossi, A. & Romeo, E. (2013). Zirconia and titanium implant abutments for single-tooth implant prostheses after 5 years of function in posterior regions. Int J Oral Maxillofac Implants. 28(1):281-7.

Najeeb, S, Zafar, M. S., Khurshid, Z. & Siddiqui, F. (2016). Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 60(1):12-19.

Pjetursson, B. E., Sailer, I, Zwahlen, M. & Hämmerle, C. H. (2007). A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns. Clin Oral Implants Res. 18(Suppl3):73-85.

Sailer, I, Pjetursson, B. E., Zwahlen, M. & Hämmerle, C. H. (2007). A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part II: Fixed dental prostheses. Clin Oral Implants Res. 18(Suppl3):86-96.

Sailer, I, Philipp, A, Zembic, A, Pjetursson, P, Hämmerle C. H. F. &Zwahlen, M. (2009). A systematic review of the performance of ceramic and metal implant abutments supporting fixed implant reconstructions. Clin Oral Implants Res. 20(Suppl4): 4–31.

Sarot, J. R., Contar, C. M., Cruz, A. C. & Magini R. S. (2010). Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med. 21(7):2079-85.

Schwitalla, A. & Müller, W. D.(2013). PEEK dental implants: a review of the literature. J Oral Implantol. 39(6):743-9.

Sevimay, M, Usumez, A. & Eskitascioglu, G. (2005). The influence of various occlusal materials on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite-element study. J Biomed Mater Res B Appl Biomater. 73(1):140-147.

Skirbutis, G, Dzingutė, A, Masiliūnaitė, V, Šulcaitė, G. & Žilinskas, J. (2017). A review of PEEK polymer's properties and its use in prosthodontics. Stomatologija. 19(1):19-23.

Srirekha, A. & Bashetty, K. (2010). Infinite to finite: an overview of finite element analysis. Indian J Dent Res. 21(3):425-432.

Tannous, F, Steiner, M, Shahin, R. & Kern, M. (2012). Retentive forces and fatigue resistance of thermoplastic resin clasps. Dent Mater. 28:273-8.

Tekin, S, Değer, Y. & Demirci, F. (2019). Evaluation of the use of PEEK material in implant-supported fixed restorations by finite element analysis. Niger J Clin Pract. 22(9):1252-1258.

Tretto, P. H. W., Dos Santos, M. B. F., Spazzin, A. O., Pereira, G. K. R. & Bacchi, A. (2020). Assessment of stress/strain in dental implants and abutments of alternative materials compared to conventional titanium alloy-3D non-linear finite element analysis. Comput Methods Biomech Biomed Engin. 23(8):372-383.

Trivedi, S. (2014). Finite element analysis: A boon to dentistry. J Oral Biol Craniofac Res. 4(3):200-203.

Vagkopoulou, T, Koutayas, S. O., Koidis, P. & Strub, J. R. (2009). Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent. 4(2):130-51.

Zarone, F, Russo, S.& Sorrentino, R. (2011). From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater.27: 83–96.

Zembic, A, Bösch, A, Jung, R. E., Hämmerle, C. H. & Sailer, I. (2013). Five-year results of a randomized controlled clinical trial comparing zirconia and titanium abutments supporting single-implant crowns in canine and posterior regions. Clin Oral Implants Res. 24(4):384-90.

Zembic, A, Philipp, A. O., Hämmerle, C. H., Wohlwend, A. & Sailer, I. (2015). Eleven-Year Follow-Up of a Prospective Study of Zirconia Implant Abutments Supporting Single All-Ceramic Crowns in Anterior and Premolar Regions. Clin Implant Dent Relat Res. 17(2):e417-26.

Descargas

Publicado

31/03/2021

Cómo citar

FABRIS, R. R.; CALDAS, R. A.; MIRANDA, M. E. .; BORBA, P. .; OLIVIERI, K. A. N.; BRANDT, W. C.; VITTI, R. P. Distribución del estrés en implantes con conexión interna con coronas e intermedios de diferentes materiales. Research, Society and Development, [S. l.], v. 10, n. 4, p. e7010413933, 2021. DOI: 10.33448/rsd-v10i4.13933. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13933. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias de la salud